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ABSTRACT

Impropriety in complex signal processing has been studied

and used primarily in a communications context, but also in

some cases where complex signals are generated by adding

real signals in quadrature. We discuss the meaning of im-

propriety, and the associated use of complementary statistics,

when a real-valued random process is improper in the fre-

quency domain. Through the use of modulation signal mod-

els, spectral impropriety can be connected explicitly to the

frequency and phase of components belonging to a periodic,

or more generally rhythmic, modulator waveform. We give

theoretical signal models and provide an example of comple-

mentary analysis on underwater propeller noise from a mer-

chant ship.

Index Terms— Modulation, nonstationary process, im-

proper, periodical correlation, spectral analysis

1. INTRODUCTION

Many signals can be characterized as a sum of interacting

frequency components. Examples are overtones in voiced

speech, rhythms of brains waves, or subbands in machine

noise. Such signals are non-stationary in the sense that tem-

poral information, like syllables in speech or modulations in

propeller noise, arises from correlativity in the frequency do-

main. In other words, non-stationarity is not always evident in

the complex amplitudes of the frequency components them-

selves, but rather in the temporal co-variation between differ-

ent frequencies.

Spectral variation is essential to many signal processing

applications, and the spectrogram is a familiar tool in this re-

gard. For example, amplitude modulation appears as the col-

lective rise and fall of frequency amplitudes over time. An-

other example is the rise in one frequency bin coordinated

with the fall in another bin, signifying a shifting resonance or

harmonic in speech analysis.

To second order, nonstationarity in a temporal signal man-

ifests as spectral correlations. As a complex random vari-

able, the amplitude X(ω) at frequency ω has two distinct
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second-order statistics: the real-valued Hermitian variance

E{|X(ω)|2}, and the lesser-known, complex complementary

variance E{X2(ω)}. If the latter is equal to zero, then X(ω)
is proper [1], or second-order circular [2]. Otherwise, it is

improper or non-circular. In the communications literature, it

has been shown that optimal detection requires the use of all

second-order statistics, Hermitian and complementary (e.g.,

[3]). It is also increasingly common to use complementary

statistics for data which is bivariate and naturally represented

by complex numbers, such as fMRI analysis [4].

Impropriety in the spectrum and analytical signal calcu-

lated from real physical signals, like those mentioned at the

beginning of this section, has comparatively little coverage

in the literature. Speech can be empirically improper in the

frequency domain [5], but impropriety is poorly understood

in terms of its relation to physical properties of real-world

signals. A necessary, but not sufficient condition for impro-

priety is that the real-valued random process be at least non-

stationary [6].

More specifically, it would seem that impropriety is re-

lated to the phase characteristics of a signal. The complex

variance E{X2(ω)} parameterizes the eccentricity and angle

of an elliptical probability distribution in the complex plane

[7], which suggests that impropriety in the frequency domain

corresponds to deterministic-like, relative timing of sinu-

soidal components in the time domain. Phase information

becomes important in the analysis of approximately periodic

signals, which we define here as “rhythmic.” In this paper,

we study spectral impropriety as it relates to periodically

and rhythmically modulated random processes, with possible

applications in speech and machine noise.

The paper is organized as follows. We define spectral im-

propriety via the Fourier transform and time-varying systems

in Section 2, and then give a motivating theoretical example

of periodic modulation in Section 3. Finally, we develop a

framework for rhythmic analysis in Section 4, with applica-

tion to maritime ship noise data, and conclude in Section 5.

2. DEFINITION OF SPECTRAL IMPROPRIETY

Our definition of impropriety for a real, univariate signal oc-

curs in the frequency domain, or similarly in the complex ana-
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lytic signal. We then treat impropriety as a condition resulting

from the action of a generative system. These concepts are the

basis for our discussions of modulation frequency in Section

3.

2.1. Complex Signals from Real Data

To understand impropriety, we must consider the origin of

complex numbers in a real-valued world. In addition to

Fourier transforming a real-valued time series, we can obtain

a complex-valued time series by calculating its analytical

signal. We review Fourier synthesis and the analytic signal

here.

In continuous time, a harmonizable random process has

the Fourier-Stieltjes integral

x(t) =

∫
dX(ω)ejωt (1)

where dX(ω) is a zero-mean, complex increment process

which equals X(ω)dω when x(t) has finite energy. For

weakly stationary processes, dX(ω) is an orthogonal and

proper increment process. It is also well-known that the

analytic signal

xa(t) = 2

∫ ∞

0

dX(ω)ejωt (2)

is strictly proper [6].

On the other hand, suppose the analytic signal is improper

so that by definition E{xa(t)xa(t
′)} �= 0. Equivalently, since

E{xa(t)xa(t
′)} = 4

∫ ∞

0

∫ ∞

0

E{dX(ω)dX(ω′)}ej(ωt−ω′t′)

(3)

it follows that the spectral increment process must also be im-

proper. In Section 3, we will use the analytic signal as an

indicator of impropriety in the particular case of amplitude

modulation.

2.2. Generative Model for Impropriety

Our focus is not only impropriety in the frequency domain,

but also how impropriety relates back to the properties of the

real time-domain signal. Given x(t), assume that its incre-

ment process dX(ω) is improper. To understand the phys-

ical meaning of impropriety, we treat dX(ω) as the output

of a system driven by a proper, orthogonal increment process

dε(ω). Impropriety is then related to the properties of the sys-

tem.

By the Cramér-Wold decomposition, x(t) is the output of

a time-varying convolution

x(t) =

∫
L(t, t− τ)ε(τ)dτ (4)

where ε(t) is a stationary, white random process. Converting

to a bi-frequency representation [8], we equivalently have

dX(ω) =

∫
L(ω, λ)dε(λ) (5)

Since ε(t) is real, its Fourier increment process is conjugate

symmetric and (5) is equivalent to

dX(ω) =

∫ ∞

0

A(ω, λ)dε(λ) +

∫ ∞

0

B(ω, λ)dε∗(λ) (6)

which in our case is defined for 0 ≤ ω ≤ ∞ since dX(ω) is

also conjugate-symmetric. Expression (6) is a widely linear

system [9] with respect to dε(ω) and its complex conjugate.

Although it does not satisfy the scaling property of a truly

linear system, (6) is notable in that superposition still holds

with respect to the input dε(ω).
Since dε(ω) is white and proper, we have, respectively,

E{dε(ω1)dε
∗(ω2)} = δ(ω1 − ω2)dω1dω2

E{dε(ω1)dε(ω2)} = 0 (7)

It follows that the output complementary covariance is

E{dX(ω1)dX(ω2)} =

∫ ∞

0

A(ω1, λ)B(ω2, λ)dλ

+

∫ ∞

0

B(ω1, λ)A(ω2, λ)dλ (8)

which vanishes if either system function, A(ω, λ) or B(ω, λ),
is identically zero. With respect to (5), the impropriety of

dX(ω) results from the mixing of dε(ω) and its complex con-

jugate, or equivalently, from mixing positive- and negative-

frequency spectral elements from a stationary excitation pro-

cess. Widely-linear mixing in the frequency domain is essen-

tial to the concept of over-modulation, which we discuss next.

3. MODULATION FREQUENCY AND
IMPROPRIETY

The concept of modulation frequency is useful for studying

the intelligibility of speech [10][11] and for classifying un-

derwater propeller noise [12], to name a few examples. In the

present context, we formalize modulation frequency in terms

of periodical correlation (PC) [13], or cyclostationarity [14].

Suppose x(t) is a continuous-time PC process defined by

the point-by-point multiplication

x(t) = m(t) · c(t) (9)

where all components are real-valued, c(t) is stationary white

noise, and m(t) is periodic. With respect to (4), L(t, τ) =
m(t) has no convolution component. For now we present this

simple model as a tool for understanding impropriety, but we

will expand upon this model to account for aperiodicity and

temporal correlation later in Section 4.

There are two cases within the PC signal model, sinu-

soidal and generally periodic modulation.
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3.1. Sinusoidal Over-Modulation

The simplest PC case is a sinusoidal modulator, m(t) =
r0 cos(ω0t + θ0), where ω0 = 2πf0 is the modulation fre-

quency. In the following, we show that the spectral impropri-

ety of x(t) is directly related to ω0.

First decompose c(t) into real, lowpass and highpass

components cL(t) and cH(t), having non-overlapping power

spectra, such that c(t) = cL(t) + cH(t). Now, suppose that

the upper and lower cutoff frequency of cL(t) and cH(t) is

equal to the modulation frequency ω0, as shown in Figure 1.

Then by the Bedrosian product theorem [15],

xa(t) = ma(t) · cL(t) +m(t) · cH,a(t) (10)

where subscript-a in every case denotes an analytic signal.

The complementary variance of the analytic signal is

E{x2
a(t)} = σ2

Lm
2
a(t) (11)

where σ2
L is the variance of cL(t). The above result follows

from the fact that cH(t) is stationary and its analytic signal

cH,a(t) is proper. Cross-terms similarly vanish due to orthog-

onality of cL(t) and cH(t).

We conclude that the analytic signal is improper for any

modulation frequency ω0 > 0. Equivalently, x(t) is spectrally

improper. This result links impropriety to over-modulation, or

when the frequency of modulation overlaps the spectral con-

tent of a multiplicative carrier signal. From the perspective

of the widely linear system (6), the impropriety of dX(ω)
is a result of the modulator shifting positive- and negative-

frequency spectral increments of cL(t) into the range 0 ≤
ω ≤ π.

3.2. Generally Periodic Modulation

When m(t) is periodic with a Fourier series consisting of mul-

tiple harmonics, the Bedrosian approach to the analytic signal

leads to a sum of non-orthogonal cross terms. Another way

to decompose the signal is a subband approach. For example,

the short-time Fourier transform (STFT) is

X(t, ω) =

∫
g(t− τ)x(τ)e−jωτdτ (12)

where g(t) is a lowpass filter. Since x(t) is temporally white,

the complementary variance of the subband array is

E{X2(t, ω)} =

∫
g2(t− τ)m2(τ)e−j2ωτdτ (13)

Since m2(t) has the same fundamental frequency as m(t), a

subband centered on frequency ωk will be improper if and

only if 2ωk is in the vicinity of a harmonic in m2(t).





Fig. 1. Schematic for Bedrosian over-modulation, where the

dark shaded and pattern-shaded power spectra correspond to

cL(t) and cH(t), respectively (top). The bottom plot shows

the components of the analytic signal after the frequency shift.

4. RHYTHMIC SIGNAL ANALYSIS

The PC model is insufficient to explain most real-world sig-

nals, since x(t) in (9) is both white and perfectly periodic.

However, many signals of interest are rhythmic in the sense

that they are approximately periodic. Notable examples are

syllabic rhythms in speech, propeller modulations in ship

noise, and brain waves. In this section, we propose a rhyth-

mic analysis approach using complementary statistics.

Consider the rhythmic process y(t) given by the model

y(t) =

∫
h(t, t− τ)x(τ)dτ. (14)

We assume that h(t, τ) varies slowly in the t dimension, at

rates less than the fundamental frequency of m(t). Conse-

quently, h(t, τ) is a time-varying perturbation on the other-

wise PC x(t). Additionally, the convolution component of

h(t, τ) accounts for non-white y(t). All components are real-

valued, and (14) is a particular version of (4).

Equivalently,

y(t) =

∫
H(t, ω)ejωtdX(ω). (15)

Assuming that H(t, ω) is sufficiently smooth in ω, we have

x(t) ≈
∑
k

Hk(t) · xk(t) (16)

where Hk(t) is the average complex value of H(t, ω) in the

kth rectangular interval in ω, and xk(t) is the kth analytic sub-

band component of x(t). From (13), xk(t) can be improper

if m2(t) contains harmonics in the vicinity of two times the

subband center frequency.

Defining Y (t, ωk) as the STFT of y(t), we claim that

Y (t, ωk) contains the kth modulated component Hk(t) ·xk(t)
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for appropriate subband frequencies ωk. The Hermitian en-

velope |Y (t, ωk)|2 is related to the Hilbert envelope and the

spectrogram. Our contribution with this paper is the com-

plementary envelope Y 2(t, ωk), which contains the phase of

Hk(t) and xk(t).
Both envelopes can be analyzed in the modulation-

frequency domain by Fourier transforming over t. The re-

sulting modulation spectra are the usual Hermitian DEMON

(Demodulated Noise) spectrum [12] and the new complemen-

tary DEMON spectrum introduced here. Figure 2 displays

both DEMON spectra for merchant ship noise in a subband

centered on 450 Hz. As seen, the 2-Hz blade rate appears

as a ripple pattern in the complementary spectrum, which is

consistent yet different from the harmonics seen in the Her-

mitian spectrum. Further work is needed to disentangle the

propeller blade modulation m(t) from the aperiodicities in

h(t, τ), but the preservation of phase in the complementary

variance suggests that aperiodic timing information can be

demodulated as a complex term from Y 2(t, ωk).

5. CONCLUSION

Using a periodically correlated signal model, we proved the

connection between modulation frequency and impropriety in

the frequency domain and in the analytic signal. Specifically,

the phenomenon of over-modulation, where the modulating

frequency overlaps the spectrum of a stationary carrier sig-

nal, can be estimated directly by complex subband analysis

of the signal. We developed a framework for analyzing a

rhythmic signal, which is a complex-modulated version of a

periodically correlated signal. Preliminary results from pro-

peller noise data begin to verify the existence of impropriety

in real-world signals. For future work, spectral impropriety

necessitates new estimators and filters for processing rhyth-

mic nonstationary signals.
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