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ABSTRACT

There has been much activity on model selection for multi-
dimensional data in recent years under the assumption of a
Gaussian noise distribution. However, methods which are
optimal for Gaussian noise are very sensitive against brief
sensor failures. We suggest two robust model order selec-
tion schemes for multi-dimensional data based on the MM-
estimator of the covariance of the r-mode unfoldings of the
complex valued data tensor. Simulation results are given for
2-D and 3-D uniform rectangular arrays based source enu-
meration, both for Gaussian noise and a brief sensor failure.

Index Terms— robust model selection, tensors, source
number enumeration, robust covariance matrix estimation

1. INTRODUCTION

Estimating the number of signal components impinging on
a sensor array is a crucial step in various signal processing
tasks, such as direction of arrival estimation, source separa-
tion and Doppler frequency estimation. There has been much
research on matrix based array signal processing techniques
during the last decades which consider various signal and
noise constellations, depending on the application at hand.
Various model order selection criteria have been developed
and shown to be optimal in some sense, e.g., efficient or con-
sistent under given assumptions, such as the Gaussian distri-
bution of the noise.

Recently, there has been an increased interest in multi-
dimensional array signal processing, which is advantageous,
since problems are seen from multiple perspectives. Multi-
ple dimensionality can refer to spatial dimensions, e.g., 2-
dimensional or 3-dimensional arrays, but also to combina-
tions of several dimensions like space, time, frequency, and
polarization. A further important advantage of using multi-
dimensional data lies in the identifiability due to the higher
rank of the multi-dimensional data.

Recent publications have extended classic model order se-
lection criteria [1] to the multi-dimensional case by using ten-

sor notation [2]. It has been shown that taking into account
the multi-dimensional structure of the data improves the es-
timation of the model order. Not much attention has been
payed, however, how these criteria perform for small depar-
tures from the assumptions. A practical case which we inves-
tigate is what happens when a sensor fails for a short period
of time. One could assume that the above techniques can deal
with this problem, especially when the number of dimensions
and correspondingly sensors, increases.

In this work, we show that even a single sensor failure dur-
ing one snapshot can cause classical matrix and tensor based
model order selection criteria to break down, i.e., the ability
to estimate the correct number of sources impinging onto the
array decreases drastically. We also give robust extensions
of classical criteria, for R-dimensional arrays. Robustness
here refers to statistical robustness [5], i.e., the methods we
suggest are nearly optimal for the Gaussian case and are not
much affected when a fraction of the data is corrupted, e.g.,
by a faulty sensor. Simulation results are given to illustrate
the performance of our method for 2-D and 3-D arrays.

The paper is organized as follows: Section 1 gives an
introduction and provides a motivation for robust source
number enumeration for R-dimensional arrays. Section 2 de-
scribes source number enumeration forR-D arrays. Section 3
introduces robust source number enumeration for R-D arrays
and two examples are given. Section 4 provides simulation
results for the two examples for Gaussian noise and brief
sensor failure cases. Section 5 concludes the paper with some
remarks on future work.

2. SOURCE NUMBER ENUMERATION FOR R-D
ARRAYS

Recently, multi-dimensional versions of many classical model
order selection schemes have been derived. For a comprehen-
sive overview, the reader is referred to [2]. In this paper we
treat only theR-dimensional extensions of Akaike’s Informa-
tion Criterion and the Minimum Description Length, which
are denoted as R-D AIC and R-D MDL, respectively. Both
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AIC and MDL are based on the structure of the signal and
noise subspace, i.e., the eigenvalues. TheR-D extension con-
sists in replacing the eigenvalues in the classical criteria by
the global eigenvalues, i.e., the R-D subspace and adjusting
the free number of parameters in the penalty terms.

Following the notation of [2, 3], in the remainder of the
paper, scalars are denoted as italic letters, column vectors as
lower-case bold-face letters, matrices as bold-face capital let-
ters and tensors are written as bold-face calligraphic letters.
The (i, j)-th element of the matrix A is denoted as ai,j and
the (i, j, k)-th element of a third order tensor A as ai,j,k.
The superscripts T , H , −1 and ∗ denote transposition, Her-
mitian transposition, matrix inversion, and complex conjuga-
tion, respectively. Furthermore, r-mode vectors of a tensor
are obtained by keeping all indices fixed except for the r-th
index which is varied within its range. The r-mode unfold-
ing of a tensor A ∈ CI1×I2×...×IR is denoted by [A](r) ∈

CIr×(I1...Ir−1Ir+1...IR). The r-mode unfolding is therefore
nothing else than a matrix containing the r-mode vectors of
the tensor. The r-mode product of a tensor A and matrix
U ∈ CJr×Ir is denoted as A ×r U ∈ CI1×I2...×Jr...×IR . It
is obtained by multiplying all r-mode vectors of A from the
left-hand side by the matrixU.

The R-D AIC chooses the model order d̂ as the value k ∈
{1, . . . ,K}, which minimizes

φAIC(k)=−N(α(G)−p) log

(
g(G)(p)

a(G)(p)

)
+p(2α(G)−p). (1)

Here, α(G) is the total number of sequentially defined eigen-
values, a(G)(p) and g(G)(p) are the arithmetic and geometric
means of the smallest p = K − k global eigenvalues, which
are given by the product of the eigenvalues computed for ev-
ery r-mode of the tensor [2]. Similarly, the R-D MDL crite-
rion is given by

φMDL(k)=−N(α(G)
−p) log

(
g(G)(p)

a(G)(p)

)
+
1

2
p(2α(G)

−p) log(N)

(2)
and only differs in the penalty term. The r-mode eigenvalues
are estimated by use of the sample covariance matrix of the
r-mode unfolding of the data tensorX , i.e.,

R̂
(r)
XX =

Mr∏R

i=1 Mi

[X ](r)[X ]H(r) ∈ C
Mr×Mr . (3)

3. ROBUST SOURCE NUMBER ENUMERATION
FOR R-D ARRAYS

It is well known in the array signal processing community
that the sample covariance matrix is optimal in the Maxi-
mum Likelihood sense under the Gaussian noise assumption.
However for slight deviations from the Gaussian assumption
it looses drastically in performance [4, 5]. This can be ex-
plained by means of the influence function which describes
the bias impact of infinitesimal contamination at an arbitrary

point on the estimator, standardized by the fraction of con-
tamination [5]. In the case of the sample covariance matrix,
the influence of a bad data point, e.g., generated by a sensor
failure is unbounded [4]. Hence, none of the classical sub-
space based source enumeration methods are robust against a
sensor failure and the optimality of these methods is quickly
lost.

We suggest, therefore, to induce robustness into R-D
source number enumeration by replacing the sample co-
variance matrix of the r-mode unfolding of the data tensor
by a highly efficient and statistically robust estimate of the
covariance matrix. One such estimator is the multivariate
MM-estimator of the covariance matrix [6, 7]. The principle
of the estimator is based on a two step procedure: (i) get
an initial estimate of the covariance by using a very robust
estimator, e.g., an S-estimator and (ii) compute the final
estimate of the covariance matrix using an estimator which
is efficient at the assumed model, e.g., a correctly tuned M-
estimator. S-estimators are a generalization of LS-estimators,
where the standard deviation is replaced by a robust scale es-
timate, while M-estimators are a generalization of Maximum
Likelihood estimators where the log-likelihood function is
replaced by a function which leaves the majority of the data
unchanged, while bounding the effect of the strongly deviat-
ing data points [5].

For the MM-estimator, the influence function is bounded
and smooth, which means that the bias impact of a large con-
tamination is bounded and small changes in the data lead to
small changes in the estimate. By ensuring these conditions,
we can achieve nearly optimal estimates of the covariancema-
trix for Gaussian noise and a similar performance in case of
a brief sensor failure. By applying robust covariance estima-
tion to all r-mode unfoldings of the data tensor, we obtain a
robust R-D AIC that chooses the model order d̂ as the value
k ∈ {1, . . . ,K}, which minimizes

φAIC,rob(k) = −N(α(G)−p) log

(
g
(G)
rob (p)

a
(G)
rob (p)

)
+p(2α(G)−p).

(4)
Here, a

(G)
rob (p) and g

(G)
rob (p) are computed analogously to

a(G)(p) and g(G)(p) with the difference that the eigenval-
ues are estimated using the robust MM-covariance matrix
estimator. Similarly, the robust R-D MDL is given by

φMDL,rob(k)=−N(α(G)
−p)log

(
g
(G)
rob (p)

a
(G)
rob (p)

)
+
1

2
p(2α(G)

−p) log(N).

(5)

Since the MM-estimator was designed for real-valued
data, for complex valued data, stacking of the real- and
imaginary-parts of the r-mode unfoldingsmust be performed,
i.e.,

[X̃ ](r) =

⎡
⎣ Real

{
[X ](r)

}
Imag

{
[X ](r)

}
⎤
⎦ . (6)
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By employing the MM-estimator on (6), we obtained the ro-
bust estimate of its covariance matrix R̂

(r)

X̃X̃,robust
that can be

expressed as

R̂
(r)

X̃X̃,robust
=

[
R̂

(r)

X̃X̃A

R̂
(r)

X̃X̃B

R̂
(r)

X̃X̃C

R̂
(r)

X̃X̃D

]
. (7)

Therefore, the robust estimate of the covariance matrix of the
r-mode unfolding of the data tensorX can be identified as

R̂
(r)
XX,robust = R̂

(r)

X̃X̃A

+ R̂
(r)

X̃X̃D

+ j(R̂
(r)

X̃X̃C

− R̂
(r)

X̃X̃B

). (8)

3.1. Robust Source Number Enumeration R-D Uniform
Rectangular Arrays

In the following, we give two examples which illustrate the
applicability of the proposed methods. We consider the rela-
tively simple setup of 2-D and 3-D rectangular arrays. Exten-
sions into higher dimensions are straight-forward and other
applications such as Electro-Encephalography (EEG), where
the dimensions would be time, frequency, and channels can
be formulated analogously.

3.1.1. Example 1: Robust Source Number Enumeration for a
2-D Uniform Rectangular Array

Consider a two-dimensional Uniform Rectangular Array
(URA) of dimensions M1 × M2 with d sources impinging
onto the array. The spatial frequencies for the i-th source for

the two dimensions are represented by μi =
[
μ
(1)
i , μ

(2)
i

]T
,

i = 1, . . . , d. The vector a(r)(μ
(r)
i ) denotes the array re-

sponse in the r-th dimension for the i-th source, where
r = 1, 2 in this example. Let N denote the number of
available snapshots andM = M1 ·M2 be the total number of
sensors. Let S be the complex valued source symbol matrix
of dimensions d×N . In the classical matrix based approach,
all the spatial dimensions are stacked into column vectors.
Here, we construct a measurement tensor X ∈ CM1×M2×N

as

X = A×3 S
T +W , (9)

whereW is i.i.d. complex circular stationary noise tensor and
A is the array steering tensor constructed as

A =
[
A1 3A2 . . . 3Ad

]
, (10)

where r represents the concatenation operation along mode
r, and matrixAi is obtained from the outer product of the ar-
ray response vectors a(1)(μ

(1)
i ) and a(2)(μ

(2)
i ), i = 1, . . . , d.

For this case, the global (robust) eigenvalue is given by the
product of the three (robust) eigenvalues of the r-mode un-
foldings of the measurement data tensorX [2] .

3.1.2. Example 2: Robust Source Number Enumeration for a
3-D Uniform Rectangular Array

Similar to the 2-D case, withM3 denoting the number of sen-
sors on the third dimension of the array, we model the mea-
surement tensorX ∈ CM1×M2×M3×N as

X = A×4 S
T +W , (11)

where W is i.i.d. complex circular stationary noise tensor.
Note that in this 3-D example, the spatial frequencies for the
i-th source for the three dimensions are represented by μi =[
μ
(1)
i , μ

(2)
i , μ

(3)
i

]T
, i = 1, . . . , d. The vector a(r)(μ

(r)
i ) rep-

resents the array response in the r-th dimension for the i-th
source, where r = 1, 2, 3. The array steering tensorA is then
constructed as

A =
[
A1 4A2 . . . 4Ad

]
, (12)

where tensor Ai is obtained from the outer product of the
array response vectors a(1)(μ

(1)
i ), a(2)(μ

(2)
i ) and a

(3)(μ
(3)
i ),

i = 1, . . . , d.

4. SIMULATIONS

The simulation setup for Example 1 is a 2-D URA array setup
with parameters as follows: M1 = 8,M2 = 8, d = 3,N = 6,
μ1 = [−π/2,−π/4]

T , μ2 = [−π/4,−π/2]
T , μ3 = [0, π]

T ,
S contains complex valued Gaussian source symbols. Our re-
sults are given for varying SNR are based on an average over
100 Monte Carlo runs. Figure 1 illustrates the performance of
robust and classical methods for source number enumeration.
It is clearly visible here that R-D based methods perform bet-
ter than matrix based methods. Furthermore, the robust meth-
ods perform similarly to the non-robust ones.
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Fig. 1. Average probability of detecting the correct number
of sources for different SNR using source enumeration with a
2-D ULA in case of Gaussian noise.

Figure 2 illustrates a scenario where we have a very short
sensor failure. We simulated this by randomly replacing a sin-
gle observation at a random sensor position with a complex

3711



−20 −15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR [dB]

P
ro

ba
bi

lit
y 

of
 c

or
re

ct
 s

ou
rc

e 
nu

m
be

r 
en

um
er

at
io

n

 

 

R−D AIC
R−D MDL
AIC
MDL
robust R−D MDL
robust MDL
robust R−D AIC
robust AIC

Fig. 2. Average probability of detecting the correct number
of sources for different SNR using source enumeration with a
2-D ULA in case of brief sensor failure.

i.i.d. impulsive noise, i.e., the contaminating density is com-
plex, zero mean Gaussian with variance equal to κσ2. In this
example κ = 50, other impulsive noise types produced simi-
lar results. The second simulation setup is a 3-D scenario with
the following parameters: M1 = 5, M2 = 7, M3 = 9, d =

3, N = 10, μ1 = [−π/4, 0, π/4]
T , μ2 = [0, π/4, π/2]

T ,
μ3 = [π/4, π/2, 3π/4]

T . The other parameters were cho-
sen as in the previous example. Figure 3 shows the results
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Fig. 3. Average probability of detecting the correct number
of sources for different SNR using source enumeration with a
3-D ULA in case of Gaussian noise.

for the Gaussian noise case. Again, the R-D methods pro-
vide a considerable gain in detecting the correct number of
sources compared to matrix based methods. Differences be-
tween non-robust and robust methods, as well as between AIC
and MDL based methods are small. Figure 4 displays the ef-
fects of a brief single sensor failure. It becomes apparent that
even for the increased number of sensors that are used in the
3-D case, a single failure causes the non-robust methods to
break down.

5. CONCLUSIONS

We have investigated the problem of source number enumera-
tion for array signal processing in the presence of brief sensor
failures. For this, we have introduced robust model selection
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Fig. 4. Average probability of detecting the correct number
of sources for different SNR using source enumeration with a
3-D ULA in case of a brief sensor failure.

criteria for multi-dimensional array data based on the robust
MM-estimate of the covariance matrix using the r-mode un-
folding operation of the data tensor. Our method is applicable
to complex as well as real-valued data. In this way, we obtain
robust estimates of the r-mode eigenvalues which are multi-
plied to get global eigenvalues. These are used to robustifyR-
D model order selection criteria. The proposed criteria have
shown nearly optimal performance with 2-D and 3-D uniform
rectangular array settings for the Gaussian noise. In case of a
brief sensor failure, they provide a similar performance while
non-robust methods break down. Also theR-D criteria gener-
ally outperform the matrix based ones. Not much difference
is observed between applying all variants of AIC and MDL.
Future work will consider different non-Gaussian noise sce-
narios, dropping of the independence assumption and apply-
ing the proposed criteria to real EEG data.
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