
TOPOLOGICAL PERSISTENCE ON A JORDAN CURVE

Ying Zheng, Steve Gu and Carlo Tomasi

Department of Computer Science
Duke University, Durham, NC USA 27708

ABSTRACT

Topological persistence measures the resilience of ex-

trema of a function to perturbations, and has received in-

creasing attention in computer graphics, visualization and

computer vision. While the notion of topological persis-

tence for piece-wise linear functions defined on a simplicial

complex has been well studied, the time complexity of all

the known algorithms are super-linear (e.g. O(n log n)) in

the size n of the complex. We give an O(n) algorithm to

compute topological persistence for a function defined on a

Jordan curve. To the best of our knowledge, our algorith-

m is the first to attain linear asymptotic complexity, and is

asymptotically optimal. We demonstrate the usefulness of

persistence in shape abstraction and compression.

Index Terms— Topological Persistence, Algorithms

1. INTRODUCTION

Topological persistence [1] measures how resilient the local

extrema of a function are to perturbations of the function val-

ues. The higher the topological persistence of a critical point,

the more likely the point is to survive a perturbation of the

shape or function. Because of this, persistence is also inti-

mately related to the notion of stability in control theory.

Topological persistence and its computation have been s-

tudied in a general setting [2, 1]. In this paper, we focus on

functions defined on a Jordan curve. This restriction has two

benefits: First, it allows for a simple, self-contained definition

of topological persistence. Second, it leads to a simple and

efficient algorithm, whose linear-time performance is asymp-

totically optimal and improves – for the 1D case – upon the

complexity of more general algorithms [1].

We give anecdotal examples of the potential usefulness

of persistence for curve simplification, also known as shape

abstraction [3, 4, 5, 6, 7, 8]. Curve simplification is useful

for noise removal, efficient storage, and a simplified repre-

sentation of shape contours as a basis for further reasoning

[9, 10, 11]. Our algorithm yields high compression ratios

through very fast computation. Our experiments are main-

ly proof-of-concept, but hint at the usefulness of our method

in several applications, including at least shape compression

Fig. 1. A function f defined on a Jordan curve C. Red dots

are local maxima of f .

and de-noising; stylized editing of hand-drawn curves; and

the simplification of object boundaries in images.

2. FUNCTIONS ON A JORDAN CURVE

A Jordan curve is a non-self intersecting, continuous loop on

the two dimensional plane. For images, we discretize a closed

curve by a sequence of pixels C = 〈p0, ..., pn−1〉 with pi �=
pj for any 0 ≤ i �= j < n. Any cyclic permutation of the

sequence represents the same curve. Given a function f :
C → R (Figure 1), a total ordering ≺ of the pixels in C is:

Definition 1 (Order≺). We say pi ≺ pj if (1) f(pi) < f(pj),
or (2) i < j and f(pi) = f(pj).

Thus, index values break ties between pixel values, so that

local maxima and minima of f can be defined unambiguously.

Since the curve C is a closed loop, it is most convenient to

use modular indices: For any integer 0 ≤ i < n and for any

integer x, let s(i, x) � (i+x) mod n be the cyclic shift of i
by x. We define local extrema as follows:

Definition 2 (Local Extrema). We say that pi ∈ C is a local
maximum of f if ps(i,−1) ≺ pi and ps(i,1) ≺ pi; pi is a local
minimum of f if pi ≺ ps(i,−1) and pi ≺ ps(i,1).

By our definition, any curve C has at least one local ex-

tremum. The number of extrema is typically large if the func-

3693978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

Fig. 2. Not all the local maxima of f are informative and most

of them do not survive small perturbations of the function. In

one dimension, topological persistence measures the stability

of local extrema of f . The solid circles are the most persistent

maxima, and the empty circles are not persistent ones.

tion f contains noisy measurements (Figure 2). For example,

perturbing a constant function arbitrarily but within a small

magnitude yields multiple local extrema, none of which are

truly informative. This justifies ranking the stability of each

extremum through the notion of topological persistence.

3. TOPOLOGICAL PERSISTENCE

In the one-dimensional case, saddles are irrelevant to the

topology of sub-level sets, and topological persistence mea-

sures the lifetime of a local maximum or a local minimum

of f . Since the local maxima of f become the local mini-

ma of −f , we only discuss how to define and compute the

persistence of local maxima of f .

The notion of persistence can be understood from many

perspectives and the most general version is introduced

through homology theory. In this paper, we find it simpler to

start with a notion related directly to a type of stability:

Definition 3 (δ-Stability). The point pi ∈ C is δ-stable if
there exist −n < l < 0 < r < n such that ps(i,x) ≺ pi for
any x ∈ [l, r] and f(pi) ≥ max

{
f(ps(i,l)), f(ps(i,r))

}
+ δ.

In words, the function f at a δ-stable maximum pi is

greater than its values in an interval around pi, and greater by

a margin of at least δ than the values at the endpoints of that

interval. Clearly, all local maxima of f are at least 0-stable.

We use δ-stability to define topological persistence:

Definition 4 (Topological Persistence). The topological per-
sistence of p ∈ C, denoted �(p), is the maximal δ under
which p is δ-stable. In other words, p is �(p)-stable but is
not (�(p) + ε)-stable for any ε > 0.

A physical picture gives an intuitive notion of persistence:

The blue dot on the left in Figure 3 is the lowest point that a

ball that rolls under gravity and without friction reaches when

released from just to the left of the red dot. The blue dot on the

right is the lowest point if the ball is released just to the right

Fig. 3. The persistence of the local maximum at the red dot is

the smaller of the maximal vertical variations – called the left

and right persistence – in the two shaded regions.

of the red dot. Persistence is the smaller of the two changes

in altitude, each measured as positive.

From a signal processing point of view, the higher the per-

sistence of a local maximum p, the more stable p. Persistence

is a global quantity for each local maximum, since its compu-

tation can possibly involve the entire domain of the curve. Lo-

cal extrema can be ranked by persistence, and low-persistence

extrema can be removed, resulting in a simplification of the

curve. Section 5 shows one way to “remove” low-persistence

extrema. We turn to the computation of persistence first.

4. THE ALGORITHM

We introduce a linear-time algorithm to compute the persis-

tence for all the local maxima of a function f on a Jordan

curve. First, note that only maxima and minima of f are

needed to this end, since values of the remaining pixels do

not affect the computation. Second, according to the physi-

cal picture of persistence, we can compute the left and right

persistence of each maximum separately, and then take the

minimum of the two.

In order to compute, say, left persistence, we traverse the

curve C clockwise starting from the global maximum of f .

Each time, we check whether a pixel is a local maximum or

minimum and update the left persistence of any maximum as

it is visited. We use a stack S to store local maxima by de-

creasing function values (when read bottom to top), and book-

mark the minimal values between consecutive local maxima

in another stack V . Algorithm 1 computes the persistence of

each maximum of f .

A step of the process for updating persistence is depicted

in the first two panels of Figure 4. Note that push(), pop(),
and top() are the standard stack operations.

4.1. Analysis

Although the algorithm has a while loop, each pixel appears

in either stack at most twice. Therefore, the complexity of

the algorithm is O(n), where n = |C| is the length of the

curve. The correctness of the algorithm follows from the fact

3694

Algorithm 1 Compute the persistence of local maxima of f .

Set persistence �(p)← +∞ for each local maximum of p;

Set the persistence of the global maximum pi: �(pi) ←
maxq∈C f(q)−minq∈C f(q);
for Δ ∈ {+1,−1} do

Push the global maximum pi of f to an empty stack S;

Initialize an empty stack V to hold local minima of f ;

for j = 1 to n− 1 do
Move to the next point: v ← ps(i,jΔ);

if v is a local minimum of f then
V.push(v);

else if v is a local maximum of f then
u← V.top();
while S.top() ≺ v do

S.pop(), V.pop();
if V.top() ≺ u then
u← V.top();

end if
end while
Update: �(v) = min {�(v), f(v)− f(u)};
S.push(v), V.pop(), V.push(u);

end if
end for

end for

that whenever a local maximum is pushed into the stack, its

left (or right) persistence is correctly computed by finding the

lowest local minimum to the left (or right) side of it. This is

realized by the while loop in Algorithm 1.

5. CURVE SIMPLIFICATION

Topological persistence is expected to be useful for curve sim-

plification. In particular, we use persistence to determine the

stable extrema in the curvature of C, and we approximate the

curve between consecutive extrema by arcs of circles. This

yields a cleaner, more compact, and typically faithful repre-

sentation of the original curve, in which salient cusps are pre-

served. Our method requires three steps: computation of local

convexity, removal of low-persistence extrema of convexity,

and approximation of intervals between high-persistence ex-

trema with arcs of circles. These steps are described next.

5.1. Measuring Local Convexity

Let p, q, r be three consecutive points on the curve C, tra-

versed clockwise. We define the local convexity f(q) at

q as the clockwise rotation angle (in [0, 2π]) between the

rays −→qp and −→qr. We say that p is convex if f(p) < π and

concave if f(p) > π. For greater resilience to noise, we

use a method similar to the Parzen window to estimate the

convexity: we first estimate the convexity at pi from the

triples (pi−1, pi, pi+1), (pi−2, pi, pi+2), . . ., (pi−k, pi, pi+k),

Fig. 4. Left to middle: The change of state resulting from

the visit of local maximum v. Red dots show the contents

of stack S, and blue dots those of stack V . The top of each

stack is on the right. Right: The final states in the two stacks.

The remaining maxima end up sorted by decreasing function

values in S (bottom to top of stack).

and then average the results with Gaussian weights (smaller

weights for more distant points).

5.2. Persistence-Based Simplification

We preserve only the persistent extrema (local maxima and

minima) of the local curvature function f : C → [0, 2π] in

order to give a compact representation of the shape. Specifi-

cally, we preserve a local maximum p ∈ C, if and only if:

�(p) ≥ max

{
α[max

q∈C
f(q)−min

q∈C
f(q)], β

}

where α, β ∈ [0, 1] are parameters and maxp∈C f(p) −
minp∈C f(p) is the persistence of the global maximum of

f . The first term in the braces specifies that the persistence

of the local maximum p must be large enough compared to

the persistence of the global maximum, and the second term

β handles degenerate case properly. A degenerate curve has

almost equal curvature everywhere (e.g. a not so perfect cir-

cle). In our experiments, we fix α = β = 0.2. The global

maximum is always preserved, since otherwise the curve may

be simplified to nothing. Local minima of f are handled by

retaining the persistent maxima of −f .

5.3. Curve Approximation via Partial Circles

Let C = 〈p, p1, . . . , pm, q〉 be the curve segment bounded

by two local extrema p and q. We fit a partial circle passing

through p and q exactly. The center of the circle has to lie on

the perpendicular bisector of pq. Let O be the bisecting point.

We first subtract O from each point in C so that O becomes

the new origin of the coordinate system. The center of the

fitting circle is therefore a point of the form c = λu, where

u is a unit vector perpendicular to the segment pq. To find λ,

we observe that from Pythagoras’s theorem the radius of the

circle is r =
√

λ2 + ‖p−q‖2

4 . We thus look for a value of λ

that satisfies the system of m equations

‖pi − λu‖ = r for i = 1, . . . ,m .

3695

Squaring both sides and rearranging terms yields:

uT piλ =
‖pi‖2
2
− ‖p− q‖2

8

and stacking all these equations into a matrix results in the

following over-constrained system of linear equations in λ:

⎛
⎜⎝

uT p1
...

uT pm

⎞
⎟⎠λ =

⎛
⎜⎜⎝

‖p1‖2

2 − ‖p−q‖2

8
...

‖pm‖2

2 − ‖p−q‖2

8

⎞
⎟⎟⎠

The least-squares solution can be computed in closed form:

λ =
4uT

∑m
i=1 ‖pi‖2pi − ‖p− q‖2uT

∑m
i=1 pi

8
∑m

i=1(u
T pi)2

.

5.4. Results

Sample results are shown in Figure 5. Our abstraction process

preserves only 1% of the original set of pixels! This great re-

duction comes at the price that not all the abstracted shape

resemble the original ones closely. However, the “gist” of the

shapes are by-and-large retained. Simplification is very inex-

pensive computationally: Given binary images of resolution

320 × 240, the shape abstraction process runs in more than

200 images per second on a laptop.

6. CONCLUSIONS

We present an efficient algorithm to compute the topological

persistence of a function defined on a Jordan curve. To the

best of our knowledge, we are the first to attain linear asymp-

totic complexity in calculating the topological persistence in

1D case, and promising results are demonstrated in shape ab-

straction. Future work will consider the efficient computation

of topological persistence in higher dimensions.

Acknowledgement: This work is supported by the Army

Research Office under Grant No. W911NF-10-1-0387.

7. REFERENCES

[1] H. Edelsbrunner, D. Letscher, and A. Zomorodian,

“Topological persistence and simplification,” Discrete
& Comp. Geometry, vol. 28, no. 4, pp. 511–533, 2002.

[2] H. Edelsbrunner and J. Harer, “Persistent homology —

a survey,” in Contemporary Mathematics, 2008.

[3] H. Hoppe, “Progressive meshes,” in SIGGRAPH, 1996.

[4] J. Popovic and H. Hoppe, “Progressive simplicial com-

plexes,” in SIGGRAPH, 1997.

[5] M. Garland and P. Heckbert, “Surface simplification us-

ing quadric error metrics,” in SIGGRAPH, 1997.

Fig. 5. Shape abstraction. The first and third column show the

original shape with color representing the (signed) curvature.

The warmer the color, the higher the curvature. The second

and the last column show the abstracted shape using typically

one percent of the total set of points! Note that the abstraction

process preserves details. Best viewed when enlarged.

[6] P. Agarwal, S. Peled, N. Mustafa, and Y. Wang, “Near-

linear time approximation algorithms for curve simpli-

fication,” Algorithmica, vol. 42, no. 3-4, pp. 203–219,

2005.

[7] J. Hershberger and J. Snoeyink, “An o(n log n) im-

plementation of the douglas-peucker algorithm for line

simplification,” in Symposium on Computational Geom-
etry, 1994, pp. 383–384.

[8] D. Douglas and T. Peucker, “Algorithms for the reduc-

tion of the number of points required to represent a dig-

itized line or its caricature,” in The Canadian Cartogra-
pher, 1973, pp. 112–122.

[9] D. DeMenthon, V. Kobla, and D. Doermann, “Video

summarization by curve simplification,” in ACM Multi-
media, 1998, pp. 211–218.

[10] H. Etou, Y. Okada, and K. Niijima, “Feature preserving

motion compression based on hierarchical curve simpli-

fication,” in ICME, 2004, pp. 1435–1438.

[11] X. Mi, D. DeCarlo, and M. Stone, “Abstraction of 2d

shapes in terms of parts,” in NPAR, 2009, pp. 15–24.

3696

