
PARALLEL GPU IMPLEMENTATION OF NULL SPACE BASED ALTERNATING
OPTIMIZATION ALGORITHM FOR LARGE-SCALE MATRIX RANK MINIMIZATION

Katsumi Konishi

Department of Computer Science, Kogakuin University, Tokyo Japan
email: konishi@kk-lab.jp

ABSTRACT

This paper provides an alternating optimization algorithm for

large-scale matrix rank minimization problems and its paral-

lel implementation on GPU. The matrix rank minimization

problem has a lot of important applications in signal process-

ing, and several useful algorithms have been proposed. How-

ever most algorithms cannot be applied to a large-scale prob-

lem because of high computational cost. This paper proposes

a null space based algorithm, which provides a low-rank solu-

tion without computing inverse matrix nor singular value de-

composition. The algorithm can be parallelized easily without

any approximation and can be applied to a large-scale prob-

lem. Numerical examples show that the algorithm provides a

low-rank solution efficiently and can be speed up by parallel

GPU computing.

Index Terms— Compressed sensing, matrix rank mini-

mization, matrix recovery, parallel computing, GPU comput-

ing.

1. INTRODUCTION

This paper deals with the affine matrix rank minimization

problem, which is the problem of finding the lowest rank

matrix satisfying affine constraints. While this problem has

combinatorial complexities and is NP hard in general, it has a

lot of applications such as model order reduction [1], matrix

completion, collaborative filtering [2], image inpainting [3]

and video inpainting [4]. Therefore it is important to provide

a practical algorithm to obtain a low-rank solution.

There are several optimization approaches such as the nu-

clear norm minimization approach [1, 5], PowerFactoriza-

tion approach [6], a singular value thresholding (SVT) algo-

rithm [7], and the fixed point continuation algorithm (FPC)

[8]. While these algorithms have good performance to pro-

vide a low-rank solution, they cannot be applied to large size

problems because of high computational cost derived from

the calculation of inverse matrix or singular value decompo-

sition (SVD).

This paper proposes an alternating optimization algorithm

for the rank minimization problem, where a low-rank solu-

tion is obtained by maximizing the nullity of the matrix to re-

cover. The advantage of the algorithm is that it can be speed

up significantly by GPU computing and requires only com-

putation of addition and multiplication but no inverse matrix

nor SVD, which implies that the algorithm can be parallelized

easily and efficiently. Parallel algorithms are very important

for a large-scale problem in GPU computing because GPU

has limited memory capacity. This paper provides a parallel

algorithm for a large-scale matrix rank minimization problem

and its parallel implementation on GPU.

2. MAIN RESULTS

2.1. Affine Rank Minimization Problem

This paper deals with the following matrix rank minimization

problem,

Minimize rankX subject to A(X) = b, (1)

where X ∈ Rm×n is a variable matrix to be recovered, m ≤
n,A : Rm×n → Rp is a given linear operator, and b ∈ Rp is

a constant vector. A special case of this problem is the matrix

completion problem as follows,

Minimize rankX subject to Xij = Mij , ∀(i, j) ∈ I, (2)

where M ∈ Rm×n is a given matrix, and I is a given set of

matrix indices. The problem of minimizing the matrix rank is

equal to the problem of maximizing its nullity, which can be

formulated as the following matrix rank maximization prob-

lem,

Maximize rankW subject to XW = 0m,n, A(X) = b,
(3)

where W ∈ Rn×n and X ∈ Rm×n are variable matrices,

and 0m,n denotes the m × n zero matrix. The matrix rank

minimization problem (1) is equal to the matrix rank maxi-

mization problem (3), that is, X∗ is the minimizer of (1) if

and only if X∗ is the optimal solution of (3).

2.2. Null Space Based Alternating Optimization Algo-
rithm

The problem (3) has difficulties about noncovexity of the ob-

jective function and the constraint XW = 0m,m. This paper

3689978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

Algorithm 1 NSAO algorithm.

Input: X ∈ Rm×n, γ, η
repeat

W ← arg min
Wii=1

fγ(W, X).

X ← arg min
A(X)=b

fγ(W, X).

γ ← γ/η.

until termination criterion is satisfied

Output: low-rank solution X

relaxes these difficulties and provides an approximate algo-

rithm.

First, we relax the objective function to a convex func-

tion. Without loss of generality we can append the constraints

Wii = 1 for i = 1, 2, . . . n to (3). This paper proposes the fol-

lowing relaxed problem,

Minimize ‖W‖2F
subject to Wii = 1, XW = 0m,n, A(X) = b,

(4)

where W and X are variable matrices, and ‖ · ‖F denotes

the Frobenius norm of the matrix. The key idea of this paper

is relaxing the rank maximization problem by the Frobenius

norm minimization. If there is no constraint except for Wii =
1, we can exactly maximize the rank of W by minimizing its

Frobenius norm. Therefore it is expected that (4) provides a

good solution of (3) and rarely gives a lower rank solution.

Although (4) has a convex objective function, it still

involves combinatorial difficulty caused by the constraint

XW = 0m,n. To relax this difficulty, this paper applies the

Lagrangian relaxation, and the following problem is obtained.

Minimize fγ(W, X)
subject to Wii = 1, A(X) = b,

(5)

where the function fγ(W, X) is defined as

fγ(W, X) = γ‖W‖2F + ‖XW‖2F
for γ > 0. Based on (5), this paper proposes the null space

based alternating optimization (NSAO) algorithm for the rank

minimization problem as shown in Algorithm 1, where η > 1,

and W and X are optimized alternatingly. In this algorithm,

we adopt the simple update scheme for Lagrange multiplier

γ, which experimentally has a good performance with few

computational cost.

2.3. Gradient Projection Method

In NSAO, W and X are obtained by solving the convex

quadratic programmings subject to linear equalities, where

higher computational cost is required than solving the un-

constrained convex quadratic programming, and the optimal

solutions cannot be obtained in practical time. To reduce the

Algorithm 2 NSAO-GPM

Input: X ∈ Rm×n, γ, η
repeat

DΦ ← γW + XT XW ; FΦ ← PΦ (W − 2DΦ)−W
αΦ ← −Tr (DΦFΦ) /‖XT FΦ‖2F
W ←W + αΦFΦ

DΩ ← XWWT ; FΩ ← PΩ (X − 2DΩ)−X
αΩ ← −Tr

(
DT

ΩFΩ

)
/‖FΩW‖2F

X ← X + αΩFΩ

γ ← γ/η
until termination criterion is satisfied

Output: low-rank solution X

computational cost, an iterating algorithm is proposed based

on the traditional gradient projection method (GPM).

Define Ω and Φ as

Ω = {X ∈ Rm×n : A(X) = b},

and

Φ = {W ∈ Rn×n : Wii = 1, ∀i},
respectively, and let PΩ and PΦ denote the orthogonal projec-

tion on Ω and Φ, respectively. We have

∂

∂X
fγ(W, X) = 2XWWT ,

∂

∂W
fγ(W, X) = 2

(
γW + XT XW

)
,

and therefore Algorithm 2 is obtained based on GPM. In Al-

gorithm 2, step length αΦ and αΩ are determined as follows.

Because fγ(W, X +αΩFΩ) is a convex quadratic function of

αΩ for given W and X and because it holds that

∂

∂αΩ
fγ(W, X + αΩFΩ)

= 2αΩ‖FΩW‖2F + 2Tr
(
WT XT FΩW

)
,

the step length minimizing fγ(W, X +αΩFΩ) is obtained as:

αΩ = −Tr
(
WT XT FΩW

)

‖FΩW‖2F
= −Tr

(
WWT XT

k Fk

)

‖FΩW‖2F
= −Tr

(
DT

ΩFΩ

)

‖FΩW‖2F
. (6)

In the same way, the step length minimizing fγ(W+αΦFΦ, X)
is obtained as:

αΦ = −Tr (DΦFΦ)
‖XT FΦ‖2F

.

In the case of the matrix completion problem (2), Ω is

defined as

Ω =
{
X ∈ Rm×n : Xij = Mij ,∀(i, j) ∈ I

}
.

3690

Let us define Ω0 as

Ω0 =
{
X ∈ Rm×n : Xij = 0,∀(i, j) ∈ I} .

Then it holds that

PΩ(X + Y)−X = PΩ0(Y), ∀X ∈ Ω, ∀Y ∈ Rm×n,

where PΩ0 denotes the orthogonal projection on Ω0. There-

fore, if X ∈ Ω, it holds that

FΩ = PΩ (X − 2DΩ)−X = −2PΩ0 (DΩ) ∈ Ω0,

and hence X +αΩFΩ ∈ Ω. This implies that X remains in Ω
in iterations if the initial value of X is in Ω. Since we can find

X ∈ Ω easily, we assume here that X ∈ Ω in each iteration.

Since it holds that

Tr
(
XT PΩ0(X)

)
= Tr

(
PΩ0(X

T)PΩ0(X))
)
, ∀X ∈ Rm×n,

we have that

Tr
(
DT

ΩFΩ

)
= −2Tr

(
DT

ΩPΩ0(DΩ)
)

= −2Tr
(
PΩ0(D

T
Ω)PΩ(DΩ)

)
= −2‖D̃Ω‖2F ,

where D̃Ω = PΩ0(DΩ), and that ‖FΩW‖2F = 4‖D̃ΩW‖2F .

Then αΩ is obtained simply as

αΩ =
‖D̃Ω‖2F

2‖D̃ΩW‖2F
.

Therefore we obtain the update scheme of X in Algorithm 2

for the matrix completion problem as follows,

X + αΩFΩ = X − ‖D̃Ω‖2F
‖D̃ΩW‖2F

D̃Ω. (7)

In the same way, the update scheme of W is obtained as

W + αΦFΦ = W − ‖D̃Φ‖2F
‖XT D̃Φ‖2F

D̃Φ, (8)

where D̃Φ = PΦ0(DΦ) and

Φ0 =
{
W ∈ Rn×n : Wii = 0, ∀i} .

These schemes reduce the computational cost for the matrix

completion problem.

2.4. Parallel GPU Implementation

Algorithm 2 can be implemented on GPU and can be

speed up significantly. However it does not work at all on

GPU in the case of large size matrix because GPU has limited

memory capacity. Because there is no inverse matrix nor

singular value decomposition but only addition and multi-

plication of matrices in Algorithm 2, the algorithm can be

Algorithm 3 Parallel NSAO-GPM for GPU

Input: X ∈ Rpmp×pnp , γ, η
repeat

G← ptimes(XT , X, p, np)

DΦ ← γW+ptimes(G, W, p, np); D̃Φ ← PΦ(DΦ)
αΦ ← Tr(ptimes(D̃T

Φ , D̃Φ, p, np))
αΦ ← αΦ/Tr(ptimes(XT , D̃Φ, p, np))
W ←W − αΦD̃Φ

G← ptimes(W, WT , np)

DΩ ←ptimes(X, G, p, np); D̃Ω ← PΩ(DΦ)
αΩ ← Tr(ptimes(D̃T

Ω , D̃Ω, p, np))
αΩ ← αΩ/Tr(ptimes(D̃Ω, W, p, np))
X ← X − αΩD̃Ω

γ ← γ/η
until termination criterion is satisfied

where
function ptimes(U, V, p, np)

parallel for i = 0 to p− 1 do
parallel for j = 0 to p− 1 do

Ugpu ←
c2g

U(inp + 1 : (i + 1)np, :)

Vgpu ←
c2g

V (:, jnp + 1 : (j + 1)np)

Ggpu ← UT
gpuVgpu

G(inp + 1 : (i + 1)np, jnp + 1 : (j + 1)np) ←
g2c

Ggpu

end parallel for
end parallel for
return G
end function

Output: low-rank solution X

parallelized easily by dividing a large matrix into several

matrices. This parallel algorithm can be executed on GPU

if each divided matrix size is adequate for GPU memory

capacity.

Although the computing time of addition and multipli-

cation on GPU is much shorter than CPU, GPU computing

requires data transmission time between CPU and GPU.

Because the execution time of addition in GPU including

data transmission time is longer than CPU, this paper par-

allelizes only multiplications in Algorithm 2 and proposes

Algorithm 3, where X is assumed to be pmp × pnp matrix,

and each matrix multiplication is parallelized to p2 matrix

multiplication tasks. In Algorithm 3, ‘←
c2g

’ and ‘←
g2c

’ denote

the data transmission from CPU to GPU and from GPU to

CPU, respectively, and Ugnu, Vgnu and Ggnu are variables on

GPU. The notations G(a : b, c : d), U(a : b, :) and V (:, c : d)
denote the submatrix of G formed by rows from a to b and

columns from c to d, that of U formed by rows from a to b,

and that of V formed by columns c to d, respectively.

3691

Table 1. Computing time of CPU:CPU only, G0:GPU only,

G1:single GPU, and G2:double GPUs [sec].

n r iter CPU G0 G1 G2

200 2 167 0.7141 0.3932 - -

500 5 137 5.517 1.144 - -

1000 10 129 35.42 2.778 - -

2000 20 127 268.1 16.83 123.1 66.21

4000 40 125 2013 108.2 744.0 381.7

8000 80 126 16042 - 5254 2712

10000 100 126 30959 - 10227 5321

3. NUMERICAL EXAMPLES

This section gives numerical examples of the matrix comple-

tion problem using CPU, single GPU and double GPUs. All

numerical experiments were run in MATLAB 2010b on a PC

with an Intel Core i7 3.4GHz CPU and 16GB of RAM. The

experiments of CPU computing utilize 4 cores using MAT-

LAB command maxNumCompThreads(4). The experi-

ments of GPU computing utilize NVIDIA GeForce GTX 580

with 3GB of RAM and Jacket for MATLAB, which is a soft-

ware for GPU computing in MATLAB.

For each experiment, the optimal solution Xopt ∈ Rn×n

of rank r is generated as Y Y T , where Y ∈ Rn×r is generated

using i.i.d. gaussian entries, and Xopt is normalized so that

its maximum singular value is 1. The index set I is generated

using bernoulli {0, 1} random variables with a mean support

size of q where q/n2 is the bernoulli probability for an index

(i, j) to belong to I. We use q = 0.12 in all experiments.

In NSAO-GPM, η = 1.1, the initial value of γ is 1 × 10−2,

and that of X is generated as Xij = Mij if (i, j) ∈ I and

Xij = 0 if (i, j) /∈ I.

We solved randomly created matrix completion problems

for each set of (n, r) using NSAO-GPM with update schemes

(7) and (8) for CPU and GPU, where there is no transmission

between CPU and GPU, and parallel NSAO-GPM for single

GPU and double GPUs. In parallel NSAO-GPM, we utilized

mp = np = 2000. Both algorithms iterate until they achieve

‖Xopt − Xk‖F /‖Xk‖F < 10−3. Table 1 shows the results,

where ‘iter’ denotes the number of iterations, ‘CPU’ and ‘G0’

denote the results of NSAO-GPM using CPU and GPU, and

‘G1’ and ‘G2’ denote the result of parallel NSAO-GPM us-

ing single GPU and double GPUs, respectively. Due to GPU

memory capacity, NSAO-GPM cannot be applied to the prob-

lem of n > 4000 in GPU computing (G0).

We can see that NSAO-GPM recovers low-rank matrices

and can be speed up significantly by GPU computing if the

matrix size is adequate for GPU memory capacity. We can

also see that parallel NSAO-GPM is faster than non-parallel

algorithm using CPU computing and that the computing time

is reduced almost linearly according to the number of GPUs.

4. CONCLUSION

This paper proposes the parallel NSAO-GPM algorithm for

the matrix rank minimization problem. Numerical examples

show that the parallel GPU algorithm is faster than non-

parallel algorithm via CPU and speed up almost linearly

according to the number of GPUs. The advantage of NSAO-

GPM is that it can be parallelized and be speed up almost

linearly because it requires only addition and multiplication

but no inverse matrix nor singular value decomposition. This

implies that parallel NSAO-GPM can run on many parallel

GPUs and a many-core CPU and will be applied to much

larger problems in the near future.

5. REFERENCES

[1] K. Mohan and M. Fazel, “Reweighted nuclear norm mini-

mization with application to system identification,” Proc.
American Control Conference, pp. 2953 – 2959, 2010.

[2] E. J. Candès and B. Recht, “Exact matrix completion

via convex optimization,” Foundations of Computational
Mathematics, vol. 9, pp. 717–772, 2009.

[3] T. Takahashi, K. Konishi, and T. Furukawa, “Reweighted

l2 norm minimization approach to image inpainting based

on rank minimization,” Proc. of IEEE International Mid-
west Symposium on Circuits and System, 2011.

[4] T. Ding, M. Sznaier, and O.I. Camps, “A rank minimiza-

tion approach to video inpainting,” Proc. of IEEE Inter-
national Conference on Computer Vision, pp. 1–8, 2007.

[5] K. Mohan and M. Fazel, “Iterative reweighted least

squares for matrix rank minimization,” Proc. of the Aller-
ton Conference on Communications, Control, and Com-
puting, pp. 653–661, 2010.

[6] J. P. Haldar and D. Hernando, “Rank-constrained so-

lutions to linear matrix equations using powerfactoriza-

tion,” IEEE Signal Process. Lett., vol. 16, no. 7, pp. 584–

587, 2009.

[7] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value

thresholding algorithm for matrix completion,” SIAM J.
Optimiz., , no. 4, pp. 1956–1982, 2010.

[8] S. Ma, D. Goldfarb, and L. Chen, “Fixed point and

bregman iterative methods for matrix rank minimization,”

Mathematical Programming, vol. 128, no. 1-2, pp. 321–

353, 2011.

3692

