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ABSTRACT

We study the problem of support recovery of block-sparse signals,
where nonzero entries occur in clusters, via random noisy measure-
ments. By drawing analogy between the problem of block-sparse
signal recovery and the problem of communication over Gaussian
multi-input and single-output multiple access channel, we derive the
sufficient and necessary condition under which exact support recov-
ery is possible. Based on the results, we show that block-sparse
signals can reduce the number of measurements required for exact
support recovery, by at least ‘1/(block size)’, compared to conven-
tional or scalar-sparse signals. The minimum gain is guaranteed by
increased signal to noise power ratio (SNR) and reduced effective
number of entries (i.e., not individual elements but blocks) that are
dominant at low SNR and at high SNR, respectively. When the cor-
relation between the elements of each nonzero block is low, a larger
gain than ‘1/(block size)’ is expected due to, so called, diversity ef-
fect, especially in the moderate and low SNR regime.

Index Terms— Support recovery, Block-sparse signals, MISO-
MAC channel capacity

1. INTRODUCTION

The probem of sparse signal recovery has recently received much
attention and involves the estimation of a sparse signal X ∈ R

m in
high dimension with a small number of nonzero entries, via linear
measurements Y = AX + Z, where A ∈ R

n×m is referred to as the
measurement matrix and Z is the measurement noise. The goal is to
reconstruct the signal X from as few number of menasurements as
possible.

In many applications, it is important to find the exact support
of the sparse signal [1], [2]. In the noiseless environment (i.e., Z =
0), sufficient conditions to exactly recover the support of the sparse
signal have been derived in [3]-[5]. In the presence of measurement
noise, information theoretic tools have proven useful in understand-
ing the performance tradeoff for support recovery of sparse signals
[6]-[10]. In particular, Jin et al. [10] identified the connection be-
tween the problem of sparse signal support recovery and the problem
of communication over Gaussian multiple access channel (MAC),
based on which they derived sharper asymptotic tradeoffs between
the signal dimension, the number of nonzero entries, and the num-
ber of measurements for exact support recovery in the noisy setting.

In some applications, the nonzero entries of sparse signals of-
ten take place in clusters [11]-[12]. Such signals are referred to as
block-sparse [13]-[15]. To elaborate, this model is a good approxi-
mation to the signal model in applications like EEG/MEG where the
brain activities are in localized regions rather than at a single point.
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This model is also consistent with communication channel modeling
where an ideal sparse channel consisting of a few specular multi-path
components has a discrete time, bandlimited, baseband representa-
tion which exhibits a block sparse structure with the block centers
determined by the arbitrary arrival times of the multi-path compo-
nents. Consequently, understanding the limits of support recovery
for block structured sparse signals has important practical ramifica-
tions. Under the noiseless assumption, Stojnic et al. [13] presented
sufficient conditions under which the solution to minimize the sum
of l2-norms of each block finds the sparsest solution. Eldar et al. [14]
studied conditions on the measurement matrix ensuring block-sparse
signals can be recovered through various optimization techniques in
the noiseless environment. On the other hand, Ben-Haim and Eldar
[15] examined the ability of greedy algorithms to estimate a block
sparse parameter vector from noisy measurements.

In this paper, we provide the asymptotic sufficient and necessary
condition under which the exact support recovery of the block-sparse
signal is possible in a noisy environment. Our focus is on the case
where the block sizes are the same for all the blocks of a sparse sig-
nal. We find that n = log(m)/c(X) is sufficient and necessary for
the exact support recovery. We provide a complete characterization
of c(X) that depends on the number of nonzero blocks and nonzero
values of each block, based on which we discuss how much gain a
known block structure can provide in terms of the minimum num-
ber of measurements for accurate support recovery. We first show
that the block-sparsity can reduce the minimum number of measure-
ments, by at least 1

block size
, compared to conventional or scalar-sparse

signals with the same nonzero values. There is a twofold reason why
1

block size
is guaranteed: increased SNR and reduced number of effec-

tive entries (i.e., not individual elements but blocks). It is shown that
the former mainly plays at low SNR while the latter at high SNR.
In addition, so called, diversity effect is discussed through which
the block-sparsity can further reduce the minimum number of mea-
surements, especially in the regime of moderate and low SNR. Our
work can be viewed as a generalization of the work in [10] in the
sense that we interpret our problem as the problem of communica-
tions over Gaussian multi-input and single-output (MISO) MAC.

The rest of this paper is organized as follows. In Section 2, we
formulate the block-sparse signal model and the problem of support
recovery. In Section 3, we introduce an interpretation of the problem
from the perspective of information theory. Our main results and
their implications are presented in Section 4. Finally, we conclude
our work in Section 5.

2. SIGNAL MODEL AND PROBLEM FORMULATION

The overall model is the same as the standard sparse signal recovery
problem except for the signal X = [X1, · · · , Xm]T ∈ R

m. In-
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formally, the signal is divided into mb blocks, each of size b, i.e.,
X = [XT

1, · · · ,XT
mb

]T, where Xi is a vector of b entries. Block
sparsity refers to the fact that most of the blocks are zero except for
a few nonzero blocks. A more formal definition is required to derive
the results and is provided next.

We are given the total number of nonzero elements k, the
block size b, the total number of blocks mb(=m/b), the number
of nonzero blocks kb(=k/b), and a vector of the k nonzero values
w = [w1, · · · , wk]

T ∈ R
k. We assume mb and kb are integers.

Define i-th block of w as wi = [w(i−1)b+1, · · · , wib]
T. Generate

B = [B1, · · · , Bkb ]
T such that B1, · · · , Bkb are chosen uniformly

at random from {1, 2, · · ·mb} without replacement. (For notational
simplicity, let [mb] denote {1, 2, · · ·mb}.) Then, the signal of
interest X = X (w,B, b) generated on block basis such as

Xi =

{
wj if i = Bj

0T if i /∈ {B1, · · · , Bkb}
(1)

where 0 is a zero vector.
We measure X through the linear operation

Y = AX + Z (2)

where A ∈ R
n×m is the measurement matrix, Z ∈ R

n is the mea-
surement noise, and Y ∈ R

n is the noisy measurement. We further
assume that the elements of A are independently generated accord-
ing to N (0, 1) and the noise Zi are independently and identically
distributed (i.i.d.) according to N (0, σ2

z). SNR of i-th element and
SNR of j-th block are defined as X2

i /σ
2
z and ‖Xj‖2/σ2

z , respec-
tively.

Upon observing the noisy measurement Y, the goal is to recover
the support of X. Throughout this paper, we assume k and b are
known but w are unknown. In effect, the problem is equivalent to
the recovery of B since the support of X is determined by (B, b).
The performance metric is the average probability error in support
recovery. Note that the probability here is taken over the random B,
A, and Z.

3. AN INFORMATION THEORETIC PERSPECTIVE ON
BLOCK-SPARSE SIGNAL RECOVERY

Jin et al. [10] revealed the similarities between the standard sparse
recovery problem and the communication problem over MAC,
where multiple senders simultaneously transmit information, so
called, codewords, to a common receiver which tries to correctly
detect the codewords of each sender. As an extension, this paper
identifies the connection between the support recovery of the block-
spare signal and the communication over MISO MAC, which gives
a fresh insight into our problem and allows us to use various results
developed in channel coding theorem relevant to the MISO MAC.

First, we briefly review the problem of communication over
Gaussian MISO MAC. Suppose l senders wish to transmit in-
formation to a common receiver. Each sender i has Nt transmit
antennas and the receiver has a single receive antenna. Each sender

i has access to a codebook C(i) = {C(i)
1 , C

(i)
2 , · · ·C(i)

m(i)}, where

C
(i)
j ∈ R

n×Nt is a MISO codeword and m(i) is the number of code-

words in C(i). The rate for the sender i, R(i) � log m(i)

n
. To transmit

information, each sender chooses a codeword from its codebook.
Let qi be the codeword index chosen by sender i. Then, the received
signal Y ∈ R

n at the receiver is given by

Y = C(1)
q1 h1 + C(2)

q2 h2 + · · ·+ C(l)
ql hl + Z (3)

where hi ∈ R
Nt is the MISO channel gain associated with sender i

and Z ∈ R
n is the noise with Zj i.i.d. according to N (0, σ2

z).
Upon receiving Y, the receiver determines the codewords trans-

mitted by each sender. Since the senders interfere with each other,
there is an inherent tradeoff among their operating rates. The no-
tion of capacity region is introduced to capture this tradeoff by char-
acterizing all possible rate tuples R � (R(1), R(2), · · · , R(l)) at
which reliable communication can be achieved with diminishing er-
ror probability. Under the assumption that MISO channel gain hi is
unknown to each sender and each sender obeys the power constraint

‖C(i)
j ‖2F /n < 1, the capacity region of the Gaussian MISO MAC is

given by{
R :

∑
i∈T

R(i) ≤ 1

2
log

(
1 +

1

Ntσ2
z

∑
j∈T

‖hi‖2
)
, ∀T ⊆ [l]

}
. (4)

Indeed, R is achieved via the codebooks of which elements are in-
dependently generated according to N (0, 1/Nt). Recall that each
element of our measurement matrix A is generated according to
N (0, 1). This implies that when we think of our problem as the
MISO MAC communication problem as discussed below, the total
power of each sender increases proportionally to the block size b, as
opposed to the standard MISO MAC.

Next, consider how our problem can be mapped to the above
communication problem. The measurement model (2) has an alter-
native form

Y = AB1w1 +AB2w2 + · · ·+ABkb
wkb + Z (5)

where Ai ∈ R
n×b is i-th block of columns of A corresponding to

Xi. In contrast to (3), (5) can be viewed as the received signal at
the common receiver equipped with a single receive antenna, sig-
nals from kb senders, each equipped with b transmit antennas, where
sender i chooses codeword index Bi and transmits codeword ABi

over MISO channel wi. Based on the relations, we see that support
recovery of the block-sparse signal is equivalent to detection of the
MISO codewords so that the performance limit of the former can
be derived from the capacity region of the equivalent MISO MAC.
One important restriction in our problem is that the codebook A is
common to all the senders, resulting in the same rate. Consequently,
the capacity region of interest is defined in one dimensional space
such as R = log m

n
< c(w, b) at which the exact codeword detec-

tion is possible, where c(w, b) can be derived as below, from (4)

with R(1) = R(2) = · · · = R(kb), and in the consideration of the
increased transmit power by a factor of b.

c(w, b) = min
T ⊆[kb]

[
1

2|T | log
(
1 +

1

σ2
z

∑
j∈T

‖wj‖2
)]

. (6)

This quantity can be understood as a symmetric capacity of the
MISO MAC with total transmit power of each sender boosted by
a factor of b. The symmetric capacity [19] indicates the maximum
rate at which all the senders can communicate reliably.

To make a long story short, we can infer log m
n

< c(w, b) is a
sufficient condition for the accurate support recovery of the block
sparse signal. This turns out to be the true sufficient condition in the
next section.

4. MAIN RESULTS AND THEIR IMPLICATIONS

In this section, we first present the sufficient and necessary condition
under which exact support recovery of block-sparse signals is possi-
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Fig. 1. Increase in the minimum number of measurements for the
exact support recovery compared to the case when the number of
nonzero block kb = 1. (The block size is fixed to 2. Each nonzero
element is uniformly chosen at random from {±1}. ni denotes the
minimum number of measurements for exact support recovery when
kb = i.)

ble1. We then discuss how the minimum number of measurements
for exact support recovery is affected by different parameters in var-
ious scenarios. In addition, we present a set of numerical results
which help us understand our problem in more depth.

4.1. Sufficient and necessary condition

Theorem 1 (Sufficient and necessary condition): For given k, w, and
b that are bounded above, as m → ∞ the sufficient and necessary
condition under which reliable support recovery of the block-sparse
signal is possible with diminishing error probability is

n =
log m

c(w, b)
(7)

where c(w, b) is given by (6).
Note that the constant c(w, b) is explicitly characterized by the

number of nonzero blocks k/b and their SNR ‖wj‖2/σ2
z .

4.2. Implications of the theorem

Theorem 1 indicates that the minimum number of measurements
required for the exact support recovery is inversely proportional to
the symmetric capacity, c(w, b). How can a block structured signal
increase the symmetric capacity in the equivalent MISO MAC, or,
decrease the minimum number of measurements for the exact sup-
port recovery, compared to the scalar-sparse signal with the same k?
As discussed in the previous section, the block size b > 1 leads to a
boost in transmit power for each sender by a factor of b in the equiv-
alent MISO MAC problem and therefore causes SNR to be raised by
the same amount, which certainly augments the symmetric capacity.
Another factor is the reduced effective number of entries by a factor
of 1/b due to the fact that the support of signal is recovered not on
individual element basis but on block basis. Corollary 1 shows how
the two factors play dissimilarly in different SNR regime, where a
scenario different from our problem setup is considered to individu-
ally assess the impact of the two factors on reducing the minimum
number of measurements. This evaluation is interesting in itself,

1The proof of the theorem is omitted due to space limitations. It can be
derived by expanding on the proofs provided in [10].
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Fig. 2. Reduction in the minimum number of measurements for the
exact support recovery compared to the scalar-sparse signal due to
the block structure with block size b of 2, 4, and 8. (The total num-
ber of nonzero elements is fixed to 8. ‘w∼unif{1, 2}’ indicates wi

are uniformly chosen at random from {±1,±2}. ni denotes the
minimum number of measurements for exact support recovery when
b = i.)

but the results also shed light on understanding why the minimum
required number of measurements is decreased by at least 1

block size
,

which will be subsequently discussed.

Corollary 1 (Dominant parameter): Suppose sparse signals
X(1) ∈ R

m and X(2) ∈ R
m are generated according to our signal

model, under the assumption that X(1) and X(2) have k1 and k2
nonzero blocks, respectively, with the same block size b, and with
the constant l2-norm w for each nonzero block. Note that the total
number of nonzero elements are different between the two signals.
Let n1 and n2 be the minimum required number of measurements
for exact support recovery of X(1) and X(2), respectively. Let
γ = w2/σ2

z (SNR of each block). Then,

n2/n1 ≈ k2/k1 for high γ and (8)

n1 ≈ n2 ∝ 1/γ for low γ. (9)

This can be shown using the property of the symmetric capacity
(6) that T1 = [k1] and T2 = [k2] minimize (6) when ‖wj‖ is con-
stant for all j, based on which we have ni = kilog m/log (1+kiγ),
which, in turn, leads to the results. Corollary 1 indicates that when
block SNR γ is high, the minimum number of measurements is
mainly determined by the number of nonzero blocks, while it is
mostly affected by γ, not by the number of nonzero blocks, when
γ is low. Note that this observation is irrelevant to the block size
and therefore is still valid for scalar-sparse signals. Figure 1 shows
a set of relevant numerical results, where b is fixed to 2 and each
nonzero element is uniformly selected at random from {±1}. The
curves represents the average ratio of the minimum number of mea-
surements when kb = i, i =2, 3, and 4, denoted by ni to the
minimum number of measurements when kb = 1, denoted by n1.
To elaborate, take a close look at the curve with kb = 2. At low
SNR, E[n2/n1] is close to one, which indicates that even though the
number of nonzero blocks are increased from 1 to 2, the number of
measurements to detect the two position indices in X is still similar
to that in the absence of the second. On the other hand, in the regime
of intermediate SNR, E[n2/n1] increases as SNR grows, converging
to ‘2’ at high SNR that is the number of total nonzero blocks. The
above observations agree with (9) and (10).
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Now, let us focus on the discussion on how much a block
structure in sparse signals can reduce the number of measurements
needed for precise support recovery. For the succeeding results, we
assume sparse signals X(1) ∈ R

m and X(2) ∈ R
m are generated

according to our signal model with the same number of nonzero ele-
ments k, the same nonzero values w, the block size b1 for X(1), and
the block size b2 for X(2). Let k1(= k/b1) and k2(= k/b2) indicate

the number of nonzero blocks of X(1) and X(2), respectively, where
they are assumed to be integers. Let n1 and n2 be the minimum
required number of measurements for exact support recovery of
X(1) and X(2), respectively.

Corollary 2 (Minimum gain from block-sparsity): For any k1,
k2, and w that are bounded above, if k2 is a multiple of k1, then

n2

n1
≤ b1

b2
. (10)

This can be proved using the property of (6) that for any
T2 ⊆ [k2], the term 1/(2|T2|)log

(
1 + 1

σ2
z

∑
j∈T2

‖wj‖2
)

in (6) for

X(2) appears in (6) for X(1), multiplied by b2/b1. We also use the
inequality, min[a1, a2] ≤ 1/αmin[αa1, αa2, a3, a4], α, ∀ai ∈ R.
Note that if k2 is not a multiple of k1, (10) still holds for most w,
but, there exists some extraordinary w with which (10) is not true,
e.g., [100000, 0.00001,...]T. When X(1) is scalar-sparse (b1 = 1),
we have n2 ≤ (1/b2)n1, i.e., the block-sparse signal can reduce
the minimum number of measurements for exact support recovery,
by at least 1

block size
, compared to the scalar-sparse signals. This is

thanks to the composite effect of the increased SNR and the reduced
effective number of entries. According to Corollary 1, the former
mainly plays at low SNR while the latter at high SNR.

Corollary 3 (Constant magnitude induces the minimum gain): If
|wj | is constant for all j, then n2/n1 = b1/b2.

This can be shown using the property of (6) that T1 = [k1] and
T2 = [k2] minimize (5) when |wj | is constant. The results imply
that the block-sparsity gain is small when all the nonzero elements
are similar in magnitude. On the other hand, the block-sparsity
gain can be much larger than 1

block size
if the correlation in magnitude

between the elements of each nonzero block is low. For example,
in the case when w = [0.25,−5,−0.15, 5]T and σ2

z = 0.2, the
scalar-sparse signals require 26 and 52 times more measurements
for exact support recovery than the block-sparse signals of block
size 2 and the block-sparse signals of block size 4, respectively.
This large gap is due to, so called, ‘diversity’ - for a scalar sparse
signal, when an element has a much smaller magnitude than the
others, it makes the symmetric capacity (6) small and consequently
requires a large number of measurements. On the other hand, when
the support is detected on cluster basis, the above problem can be
significantly alleviated unless all the elements in each cluster have
small magnitudes. Then, one may have a relevant question, “Once
the correlation in magnitude is small, is the diversity gain substan-
tial?” The following corollary answers this question.

Corollary 4 (Gain in the low noise power regime): For any w
bounded above, when σ2

z is low, n2/n1 ≈ b1/b2.
As σ2

z → 0, for any w, T1 = [k1] and T2 = [k2] minimize
(6), based on which we can show n2/n1 tends to b1/b2. The results
indicate that the block-sparsity can reduce the minimum number
of measurements by no more than 1

block size
when the noise power

is small, regardless of the correlation in magnitude between the
elements of each nonzero block.

The numerical results in Figure 2 illustrate the reduction in the
minimum number of measurements for exact support recovery due
to the block-sparsity, compared to the scalar-sparse signal, where
three block sizes b = 2, 4, 8 and two different probability distribu-
tions for random wi are examined with 8 nonzero elements fixed for
all the cases. It is observed that at high SNR, the gain is equal to the
minimum gain 1

block size
regardless of distribution of wi, while at low

and moderate SNR, the gain is larger than the minimum gain due to
the diversity effect, proportional to the variance of wi.

5. CONCLUSION

In this paper, we showed that a known block structure in sparse sig-
nals can provide a significant gain in the minimum number of mea-
surements for accurate support recovery. To derive the results, we
used the analytical framework that relies on the connection between
the support recovery of block-sparse signals and communications
over the Gaussian MISO multiple access channel. For future work,
it would be interesting to consider the block-sparse signal recovery
with multiple measurement vectors as well as the support recovery
of blocks-sparse signals with irregular block sizes.
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