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ABSTRACT

Cognitive radio is gaining increasingly interest as a promising

solution to current spectrum resource shortage. Within vari-

ous tasks of cognitive radio, spectrum sensing is the funda-

mental one, but is challenged by wireless channel fading. By

collecting diversity among different users, cooperative sens-

ing can overcome the fading problem very well. Usually, only

the local binary decisions are available for sensing coopera-

tion due to limitation of the channel bandwidth. However, in

our previous work [1], we have shown that this strategy will

either sacrifice diversity or signal-to-noise ratio (SNR) gain.

In this paper, we will study cooperative sensing with ternary

local decisions. Compared with the binary cooperative sens-

ing, this strategy will can regain diversity and recover the ex-

tra SNR loss by appropriate threshold selection, without in-

creasing the decision forwarding bandwidth.

Index Terms— cognitive radio, cooperative spectrum

sensing, decision fusion, diversity gain, local ternary decision

1. INTRODUCTION

Opportunistic spectrum access schemes, a. k. a. cognitive

radio system, is proposed to solve the problem of spectrum

scarcity by more efficient spectrum utilization [2] compared

with the fixed spectrum allocation strategy. There are various

issues to realize the cognitive radio system [3]. Among them,

detecting the available unused spectrum resources, a. k. a.

spectrum sensing, is the first step.

Extensive research has already been conducted to improve

the spectrum sensing performance (see e.g. [4, 5, 6, 7, 8]).

Among these, cooperative sensing is proposed as an efficient

strategy to combat the fading effect. In our previous work

[1], we quantified the gain of cooperation by the cooperative
diversities for missed detection, false alarm and average er-

ror probabilities. Using diversity as the performance metric,

we designed the sensing threshold strategies for cooperative

sensing with both soft information fusion (SCoS) and hard

information fusion (HCoS). We found that while SCoS can

achieve the maximum diversity, HCoS either loses half of the
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diversity or achieves the full diversity at the price of signal-

to-noise ratio (SNR) reduction.

While the performance of SCoS is desirable, it is unrealis-

tic since it requires infinite bandwidth for the communications

between the local sensors and the fusion center. Intuitively,

the performance gap between SCoS and HCoS results from

the loss of information with the single-bit local decisions in

HCoS. It should be possible to improve the performance by

providing more information from the local sensors. In this

paper, we design the cooperative sensing scheme with local

ternary decisions. While developing the optimum strategies

is complicated and mathematically intractable, we simplify

the detection fusion problem based on our previous work [1]

to achieve the diversity and SNR gains. It is shown that with

local ternary decisions, it is possible to gain in terms of both

diversity and SNR compared with local binary decisions.

The problem formulation, the preliminaries for binary

(BD) and ternary (TD) local decisions will be introduced in

Section 2. Then, we will determine the detection fusion rules

for TD by first finding the relationship between BD and TD

in Section 3 and then selecting the detection regions for TD

in Section 4 with simulation results in Section 5. Finally,

concluding remarks and discussions on future work will be

presented in Section 6.

Notation: x ∼ CN (μ, σ2) denotes a complex Gaussian ran-

dom variable x with mean μ and variance σ2. g(γ) ∼ f(γ)

means limγ→+∞
g(γ)
f(γ) = 1.

2. SYSTEM MODEL

2.1. Signal Model
In the spectrum sensing process, the sensing users observe

signals under the following two hypotheses:

H0 : absence of primary user,

H1 : presence of primary user.
We assume that the channels between the primary and the

sensing users are Rayleigh fading with additive white Gaus-

sian noise (AWGN). Then after normalization, the signal at

each sensing users becomes [1, 5]:

ri|H0 = ni ∼ CN (0, 1),

ri|H1 = hix+ ni ∼ CN (0, γ + 1) ,
(1)
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where γ is the average SNR at the sensing users. With geo-

graphically distributed sensing users, it is reasonable to as-

sume that they experience independent fading channels. With

this assumption, the received signals for different sensing

users ris are conditionally independent identically distributed

(i.i.d.) under each hypothesis.

2.2. Performance Metrics
For the detection problem introduced in Eq. (1), there are

three performance measures, namely false alarm (Pf ), missed

detection (Pmd) and average error (Pe) probabilities. As in

[1], we will use the diversity defined as d∗ = − lim
γ→+∞

logP∗
log γ

to capture those performances.

By definition, diversity only captures the performance at

high SNR. Hence, in our analyses, we will aim at achieving

better low-SNR performance while maintaining the same di-

versity gain.

2.3. Binary Local Decision (BD) and HCoS-d0
For HCoS introduced in [1], the secondary users make local

binary decisions di ∈ {0, 1} and a fusion center will collect

all decisions and make a global decision. The local decisions

are:

di =

{
0 if 0 ≤ ‖ri‖2 < θl,B
1 if ‖ri‖2 > θl,B .

(2)

If the local decision threshold is θl,B = d0θ
o, where

θo = (1 + 1
γ ) log(1 + γ) is the local optimum threshold [1].

Then, Pf,l ∼ γ−d0 and Pmd,l ∼ d0γ
−1. With the Neyman-

Pearson (NP) detector
∑N

i=1 di �H1

H0
θf,B , the diversities

are df,B = d0θf,B and dmd,B = N − θf,B − 1. To jointly

optimize both diversities, the fusion threshold can be se-

lected as1: argmax
θf,B

(min(d0θf,B , N − θf,B − 1)) =
N + 1

d0 + 1
.

The optimized diversities can be determined accordingly as

de = df = dmd = d0

d0+1 (N + 1).
This indicates that with larger d0, HCoS-d0 can achieve

higher diversities. However, in this case, one has larger

missed detection probability with Pmd,B ∼ d0γ
−1. It is

highly probable that the SNR loss for missed detection proba-

bility will dominate the overall performance at low to medium

SNR as shown in [1, Fig. 6].

2.4. Ternary Local Decision (TD)
Similar to BD, the local decisions for TD are:

di =

⎧⎨
⎩

0 if 0 ≤ ‖ri‖2 < θl,1
♠ if θl,1 ≤ ‖ri‖2 ≤ θl,2
1 if ‖ri‖2 > θl,2 ,

(3)

1It should be noticed that at the fusion center,
∑

di’s can only take integer

values. However, to simplify the notations, we ignore the integer restrictions

without affection our analysis.

where θl,2 > θl,1 are two local decision thresholds and ♠
means “not sure”. Then, the “0” or “1” decisions2 are sent to

the fusion center for the global decision with d ∈ {0, 1}.

Under this local decisions, the probabilities under each

hypothesis are:

P (di = 0|H0) = α1 = 1− e−θl,1

P (di = ♠|H0) = α2 = e−θl,1 − e−θl,2

P (di = 1|H0) = α3 = e−θl,2

P (di = 0|H1) = β1 = 1− e−
θl,1
γ+1

P (di = ♠|H1) = β2 = e−
θl,1
γ+1 − e−

θl,2
γ+1

P (di = 1|H1) = β3 = e−
θl,2
γ+1

(4)

At the fusion center, dis follow the trinomial distribution

as:
P (d1, d2, . . . , dN |H0) = αn0

1 αN−n0−n1
2 αn1

3

P (d1, d2, . . . , dN |H1) = βn0
1 βN−n0−n1

2 βn1
3

(5)

where n0 = {the number of di = 0}, n1 = {the number of di =
1} and N is the total number of cooperating local detectors.

Accordingly, the sufficient statistics is (n0, n1). Denoting

D1 as the set of (n0, n1) to make global decision d = 1 and

D0 vice versa, we have:

Pf =
∑

(n0,n1)∈D1

P (n0, n1|H0)

Pmd =
∑

(n0,n1)∈D0

P (n0, n1|H1)
(6)

Based on Eqs. (4), (5) and (6), the optimum fusion rule

can be obtained by jointly optimizing Pe =
1
2 (Pf+Pmd) over

θl,1, θl,2 and D1. However, it is very complicated and mathe-

matically intractable and, more importantly, the solution pro-

vides no straightforward insights on the diversity gains. As

an alternative, we try to first find the relationship between fu-

sions with TD and BD and then develop the fusion rule for

TCoS.

3. THE LINK BETWEEN FUSIONS
WITH BD AND TD

It is worth noting that at the fusion center, BD has a one-

dimensional sufficient statistics set with n0 + n1 = N while

TD has a two-dimensional set with n0 + n1 ≤ N . We find

that when the fusion center with TD makes a global decision

based on only one of n0 and n1, then it is equivalent to the

fusion with BD as the following:

Lemma 1 For cooperative sensing based on local ternary
decisions with thresholds θl,1 and θl,2:

2Note that the sensor will remain silent when the local decision is ♠ .
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1. If D1 = {(n0, n1) : n1 ≥ θt}, this TD fusion is equiv-
alent to BD fusion with local threshold θl,B = θl,2 and
fusion threshold θf,B = θt;

2. If D0 = {(n0, n1) : n0 ≥ N−θt+1}, this TD fusion is
equivalent to BD fusion with local threshold θl,B = θl,1
and fusion threshold θf,B = θt;

Proof 1 : If D1 = {(n0, n1) : n1 ≥ ηt}, then:

Pf,t =

N∑
n1=ηt

N−n1∑
n0=0

N !

n0!(N − n0 − n1)!n1!
αn0
1 αN−n0−n1

2 αn1
3

=

N∑
n1=ηt

N

n1!(N − n1)!
(1− α3)

N−n1αn1
3

and

Pmd,t=

ηt−1∑
n1=0

N−n1∑
n0=0

N !

n0!(N−n0−n1)!n1!
βn0
1 βN−n0−n1

2 βn1
3

=

ηt−1∑
n1=0

N

n1!(N − n1)!
(1− β3)

N−n1βn1
3 ,

This is equivalent to BT with ηl,B = ηl,2 and ηf,B = ηt.
If D0 = {(n0, n1) : n0 ≥ N + 1− ηt}, then:

Pf,t=

N−ηt+1∑
n0=0

N−n0∑
n1=0

N !

n0!(N−n0−n1)!n1!
αn0
1 αN−n0−n1

2 αn1
3

=

N−ηt+1∑
n0=0

N

n0!(N − n0)!
αn0
1 (1− α1)

N−n0

and

Pmd,t=

N∑
n0=N−ηt+1

N−n1∑
n1=0

N !

n0!(N−n0−n1)!n1!
βn0
1 βN−n0−n1

2 βn1
3

=
N∑

n0=N−ηt+1

N

n0!(N − n0)!
βn0
1 (1− β1)

N−n0

This is equivalent to BT with ηl,B = ηl,1 and ηf,B = ηt. �

4. FUSION RULE FOR TCOS

With the relationship between BD and TD illustrated in

Lemma 1, we will next develop the fusion rule for TCoS

based on HCoS. We know that with θl,B = θo, HCoS has the

local optimum sensing strategy and the best SNR gain. Thus,

we select the lower threshold of TCoS as θl,1 = θo. Then, for

the higher threshold, we select θl,2 = d0θ
o which can achieve

higher diversity for HCoS. This sensing strategy is termed as

TCoS-1-d0.

Fig. 1. The decision region for TCoS-1-d0 with the points at the

boundary belonging to D1.

To achieve the maximum diversity, we start with the deci-

sion rule as D1 = {(n0, n1) : n1 ≤ N+1
d0+1} which is equiva-

lent to HCoS-d0 in Section 2.3. Then, since the problem with

HCoS-d0 is the SNR loss for missed detection, here we try to

increase the missed detection performance by assigning some

terms in D0 to D1 without affecting the false alarm diversity.

With TCoS-1-d0, the probabilities for local decisions are:

α1 ∼ 1 − γ−1, α2 ∼ γ−1, α3 ∼ γ−d0 and β1 ∼ γ−1, β2 ∼
(d0 − 1)γ−1, β3 ∼ 1− d0γ

−1. Accordingly,

P (n0, n1|H0) ∼ αN−n0−n1
2 αn1

3 ∼ γ−(N−n0+(d0−1)n1)

P (n0, n1|H1) ∼ βn0
1 βN−n0−n1

2 ∼ γ−(N−n1)
(7)

Recall that for HCoS-d0, df,HCoS−d0 = d0

d0+1 (N + 1).

Then, for the terms in D0 = {(n0, n1) : n1 < N+1
d0+1}, as long

as N − n0 + (d0 − 1)n1 ≥ d0

d0+1 (N +1), i.e., n0 ≤ N−d0

d0+1 +
(d0 − 1)n1, they can be moved into D1 without affecting the

diversity of false alarm. The boundary between D1 and D0

of the resultant fusion rule is a line n0 = N−d0

d0+1 + (d0 −
1)n1, which starts from (n0, n1) =

(
N−d0

d0+1 , 0
)

and ends at

(n0, n1) =
(

d0N−1
d0+1 , N+1

d0+1

)
where d0N−1

d0+1 = N − N+1
d0+1 .

The decision region for TCoS-1-d0 is illustrated in Fig.

1. The bold line is the boundary between D0 and D1 for

TCoS-1-d0 while the dashed line is the boundary for TCoS to

be equivalent to HCoS-d0. The improvement for the missed

detection probability is:

ΔPmd =
∑

0≤n1<
N+1
d0+1 , 0≤n0≤N−d0

d0+1+(d0−1)n1

βn0
1 βN−n0−n1

2 βn1
3 (8)
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Fig. 2. TCoS-1-2 vs. HCoS-1.
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Fig. 3. TCoS-1-2 vs. HCoS-2.

5. SIMULATION RESULTS

To illustrate the performance gain of TCoS-1-d0 over HCoS,

we simulated TCoS-1-2 with 5 cooperating users.

In Fig. 2, the performance of TCoS-1-2 is compared with

that of HCoS-1. It can be shown that TCoS has a higher di-

versity (dTCoS−1−2 = 4 and dHCoS−1 = 3) and the advantage

of diversity shows up very early at the low SNR.

In Fig. 3, the performance of TCoS-1-2 is compared with

that of HCoS-2. It can be shown that TCoS achieve the same

diversity with HCoS (dTCoS−1−2 = dHCoS−2 = 4), but has

about 2dB SNR gain.

From these comparisons, we see that TCoS can achieve

both diversity and SNR gains over HCoS.

6. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we proposed the cooperative sensing with

ternary local decisions (TCoS) to improve the cooperative

sensing with binary hard decisions (HCoS-d0) by pursuing

more SNR gain while maintaining the same diversity. The

link between the fusion with BD and TD was established

and it was used to determine the fusion rule for TCoS. The

simulations showed that, as a middle ground between HCoS

and SCoS, TCoS-1-d0 achieves both diversity and SNR gain

compared with HCoS schemes. In our future work, we will

study the TCoS with arbitrary thresholds, i.e., TCoS-d1-d2.

In addition, it will also be interesting to study the cooperative

sensing with multi-level local decisions to further improve

the sensing performance.
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