
SAMPLING AND RECONSTRUCTION OF TIME-VARYING ATMOSPHERIC EMISSIONS
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ABSTRACT
We study the spatio–temporal sampling of physical fields repre-
senting the dispersion of a substance in the atmosphere. We con-
sider the following setup: N sensors are deployed at ground level
and measure the concentration of a particular substance, while M
smokestacks are located in the same area and emit a time-varying
amount of the substance. To recover the emission rates of the
smokestacks with a limited number of spatio–temporal samples, we
consider time varying emissions rates lying in two specific low-
dimensional subspaces. We propose efficient algorithms and suf-
ficient conditions to recover the emission rates of the smokestacks
from the local measurements collected by the sensor network.

Index Terms— Atmospheric dispersion, source estimation, in-
verse problems, spatio–temporal sampling, sensors networks.

1. INTRODUCTION

Consider an industrial zone with multiple smokestacks releasing
plumes. Each smokestack emits the same substance with a time-
varying concentration. The transport of the substance in the atmo-
sphere is mainly the result of three physical phenomena: advection
from the wind, diffusion from turbulent eddy motion and deposition
due to gravitational settling. We examine the problem of estimating
the emission rates of each smokestack, without having direct ac-
cess to them. We measure the substance concentration in different
spatial–temporal locations using an opportunely designed sensor
network. This scenario has critical importance in designing citizen
sensing projects, such as OpenSense [1] and SafeCast [2], and in
enforcing environmental laws. Even if we focus on this interesting
scenario, the techniques we present here can be successfully used in
other sensing scenarios. Namely, if we consider any physical field
modeled by a linear partial differential equation, we can recover the
emission rates of its sources from the measurements collected by a
sensor network.

1.1. Previous Work

Sampling physical field to estimate the sources of the field has been
already investigated since few decades. An early approach by Ne-
horai et al. [3] studied the localization of a single vapor-emitting
source. Lu et al. investigated the problem of reconstructing the
diffusion fields driven by instantaneous sources [4]. The tradeoff
between spatial and temporal sampling of diffusion field to recover
point sources on a discrete grid has been investigated by Ranieri et
al. in [5]. A very comprehensive overview of the mathematical mod-
eling of atmospheric dispersions is given in [6].
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Fig. 1: A sketch of the sensing scenario. The M smokestacks are at

known locations
{
ξj

}
. The sensors are represented as blue circles

and are located at {ζi}. We aim at estimate the flow of substance

that is released by each smokestack sj(t).

1.2. Outline of the Paper

We state the problem and the fundamental assumptions in Section 2.
In Section 3 and Section 4, we develop the reconstruction algorithms
for two source models starting from the Green’s function. While
maintaining a practical approach, we also underline the theoretical
conditions for a successful recovery of the emission rates. The the-
oretical results are substantiated through the numerical experiments
described in Section 5.

2. ASSUMPTIONS AND PROBLEM STATEMENT

Mathematically, we consider the following inverse problem: esti-
mate the source emission rates sj(t) of M smokestacks using S
sensors capable of measuring the local concentration of a substance.
The substance concentration is a spatio–temporal physical field that
can be mathematically modeled by partial differential equations
(PDEs) [6]. We assume we know the locations of the smokestacks{
ξj

}M

j=1
and the locations of the sensors {ζi}Si=1. Each sensor

collects a set of T samples at different time istants {tl}Tl=1. These
samples are local measurements of the field, f(ζi, tl). An illustra-
tion of the sensing scenario is given in Fig. 1. We assume that the
PDE is linear; thus, we can derive the spatio–temporal concentration
f(x, t) of the substance using the convolution of the field’s sources
with a Green’s function g(x, t), [7]. Note that turbulent diffusion is
usually modeled using Navier-Stokes equations, that are non-linear
and therefore prevent the use of the Green’s function. However, for
the specific case of atmospheric dispersion, the advection-diffusion
equation and the Gaussian plume approximation are considered suf-
ficiently accurate by environmental engineers [6]. Throughout the
paper, we do not specify the particular Green’s function, to keep the
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WIND

Fig. 2: A simulation of atmospheric dispersion. Three sources, the

white circles, are emitting the same substance with emission rates

sj(t) ∈ HK . The value of the field is color coded: red represents the

highest concentration, while dark blue representes the lowest one.

description as general as possible. In fact, g(x, t) changes according
to the examined scenario, the boundary conditions, the presence of
an inversion layer and several other factors.

Our second important assumption regards the characteristics of
the emission rates. We assume that the jth smokestack is a point
source in the spatial domain and the respective emission rate is a
time-varying function sj(t). We consider two distinct models for
the emission rates. Both models have a limited number of degrees of
freedom:

1. Model 1: The waveform sj(t) belongs to the subspace HK

defined by the span of K known functions φk,j(t):

sj(t) =
K∑

k=1

αk,jφk,j(t), (1)

where the αk,j are the unknowns of the jth source.

2. Model 2: The waveform sj(t) is defined using the concept
of a signal with a finite rate of innovation (FRI) [8]. Namely,
each smokestack produces only K innovations over the con-
sidered period of time. Using this abstraction, we can model
many types of signals, including streams of Diracs, piecewise
constant and piecewise polynomials.

The assumed source models are important for the following reasons:

• They are sufficiently flexible to deal with many types of
sources, and provide an elegant way to solve the problem of
estimating their appearance times [9], [3], [4].

• They effectively regularize the otherwise ill-conditioned in-
verse problem.

An example of the field generated by a dispersive phenomenon
driven by a constant wind and time-varying emission rates is given
in Fig. 2.

To summarize, given the set of ST samples of the field collected
in space and time by the sensor network, we aim at the recovery of
the emission rate waveforms sj(t), knowing the Green’s function
g(x, t) of the dispersive phenomenon. The main contributions of
this paper are: first, an efficient algorithm to reconstruct the concen-
tration field generated by sources lying in HK . This reconstruction
is stable to noise corrupting the measured samples; second, an effi-
cient algorithm to recover a concentration field generated by an FRI
source. This algorithm is optimal in the sense of number of neces-
sary sensors and stable to noise; and third, an efficient way to de-

termine the initial time instant of the release; a problem with direct
practical implications.

3. RECOVERING EMISSION RATES LYING IN A LINEAR
SUBSPACE

In this section, we analyze the recovery of the emission rates living
in the linear subspace HK . Namely, each emission rate is defined
according to (1).

The concentration field generated by one smokestack located at
ξ is a convolution with the Green’s function g(x, t),

f(x, t) = g(x, t) ∗ [δ(x− ξ)s(t)], (2)

where ∗ is the convolution, δ is a Dirac delta that defines the spatial
location of the smokestack and s(t) is the emission rate. Given the
linearity of the PDE, if we have M smokestacks we rewrite (2) as

f(x, t) =
M∑
j=1

g(x, t) ∗ [δ(x− ξj)sj(t)]. (3)

Plugging the source model (1) into the field equation (3) and
using the definition of the Dirac delta we obtain

f(x, t) =
K∑

k=1

M∑
j=1

αk,jg(x− ξj , t) ∗ φk,j(t). (4)

Let θk,j(x, t)
def
= g(x− ξj , t) ∗ φk,j(t). We can rewrite (4) as

f(x, t) =
K∑

k=1

M∑
j=1

αk,jθk,j(x, t) = θ(x, t)Tα, (5)

where in the last step we vectorize the double sum and obtain an
inner product between two vectors of length KM . Note that the
vector θ(x, t) is known, since we know the functions φk,j(t). On
the other hand, the KM elements of α are the unknown parameters
that we want to estimate using local concentration measurements.

Now, let us consider having S sensors located at {ζi}Si=1, each

taking T samples of the concentration at times {tl}Tl=1. We obtain
ST measurements that can be represented as the product between a
known matrix Θ and the vector of unknowns α,⎡

⎢⎣
f(ζ1, t1)

...
f(ζS , tT )

⎤
⎥⎦ =

⎡
⎢⎣

θ(ζ1, t1)
T

...

θ(ζS , tT )
T

⎤
⎥⎦α = Θα, (6)

where Θ is a ST ×MK known matrix. We can now state the first
result—a sufficient condition for a numerically stable recovery of a
signal lying in a subspace spanned by {φk,j(t)}K,M

k=1,j=1.

Proposition 1. Consider a concentration of a substance released
by M smokestacks, whose dispersion is described by a PDE having
the Green’s function g(x, t). Assume that the emission rate wave-
forms {sj}Mj=1 belong to a subspace HK and that the concentration
is measured in space and time by a sensor network composed of S
sensors. If we collect enough measurements so that ST ≥ MK and
rank(Θ) = MK; then we can uniquely estimate the parameters
of the sources α using least square estimation. Moreover, the re-
construction error is upper bounded by the condition number κ(Θ)
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as

‖α̃−α‖
‖α‖ = O(κ2(Θ)), (7)

where α̃ is the least square estimate of α.

Note that the rank of Θ and its conditioning strictly depend on
the subspace HK and on the spatio-temporal sampling grid. We
leave a detailed discussion of this fundamental aspect to [10].

4. RECOVERING EMISSION RATES WITH A FRI

In this section, we derive a reconstruction algorithm for emission
rates sj(t) that are τ -periodic and have at most K innovations per
period [8]. First, we show how to recover the Fourier series of the
emission rates sj(t) from the Fourier series of the sensors measure-
ments, considering the physical field as a communication channel.
Second, we use the annihilation filter to determine the location and
the amplitude of the K innovations of each signal sj(t). We further
specialize the result for singular Gaussian puffs and for piecewise
constant emission rates, two interesting signal models for monitor-
ing smokestacks [6]. Note that, using these signal models we can
easily represent sources appearing at unknown time instants.

First, let us also assume that the emission rates are absolutely
integrable over the periods, sj(t) ∈ L1([0, τ ]). Then, we can de-
fine the coefficients of the Fourier series Cn(sj) with n ∈ Z. Let
f i(t) be the field f(ζi, t) measured by the ith sensor. If the Green’s
function is absolutely integrable, g ∈ L1(R), then we have

f i(t) =
M∑
j=1

g(ζi − ξj , t) ∗ sj(t), (8)

and f i(t) ∈ L1([0, τ ]). Under these assumptions, the Fourier series
Cn(f

i) exists and is given as a filtering of Cn(sj), (1 ≤ j ≤ S) in
the Fourier domain as

Cn(f
i) =

M∑
j=1

ĝ
(
ζi − ξj ,

n

τ

)
Cn(sj), (9)

where ĝ is the Fourier transform of the Green’s function. First, we
compute the coefficients Cn(f

i) by sampling the signal f i(t) after
an anti-aliasing filter. Then, for each n, we compute the Fourier
coefficients of each source’s emission rate by solving the following
linear system,⎡
⎢⎣
Cn(f1)

...
Cn(fS)

⎤
⎥⎦=

⎡
⎢⎣
ĝ
(
ζ1 − ξ1,

n
τ

)
. . . ĝ

(
ζ1 − ξM , n

τ

)
...

...

ĝ
(
ζS − ξ1,

n
τ

)
. . . ĝ

(
ζS − ξM , n

τ

)
⎤
⎥⎦
⎡
⎢⎣
Cn(s1)

...
Cn(sM )

⎤
⎥⎦ .

(10)

For convenience, we define the matrix G(n) by (G(n))i,j
def
= ĝ(ζi −

ξj ,
n
τ
). Again, the number and the locations of the sensors are fun-

damental to determine the rank and the condition number of the ma-
trices G(n). Therefore, they also determine the uniqueness and the
stability of their solutions—the coefficients Cn(sj).

This result is particularly interesting when applied to emission
rates with FRI. Let us assume that each smokestack emits K puffs
of a substance with unknown concentrations {ak,j} and at unknown

time instants {tk,j},

sj(t) =
K∑

k=1

ak,jδ(t− tk,j). (11)

Using the annihilation filter on the Fourier coefficients Cn(sj) as
described in [8], we can stably recover the amplitudes and the re-
lease times of the puffs once we have 2K + 1 contiguous Fourier
coefficients for each source’s emission rate.

We can further extend this result to a piecewise constant source
model with jumps of height Δk,j and at time instant tk,j . We define
one period of the jth emission rate as

s̃j(t) =
K∑

k=1

∫ t

0

Δk,jδ(s− tk,j) ds, t ∈ [0, τ ] (12)

and its Fourier transform as

̂̃sj (f) = K∑
k=1

Δk,j

i2πf
exp {−i2πftk,j} . (13)

Emission rates are now the periodic version of (12), that is

sj(t) =
∑
n∈Z

ŝ(t− nτ). (14)

We use the Poisson summation formula to obtain

sj(t) =
1

τ

∑
n∈Z

̂̃sj (n
τ

)
exp

{
i2π

nt

τ

}
, (15)

where ̂̃sj (n/τ) are the samples of (13) and the Fourier series co-
efficients Cn(sj). Starting from this expansion, the reconstruction
algorithm recovers the piecewise constant emission rates using an
annihilation filter. These steps are summarized in Algorithm 1.

Algorithm 1 Recovery of Finite Rate of Innovation Emission Rates

Input: Sensor locations {ζi}Si=1, smokestack locations {ξj}Mj=1

Output: Smokestacks’ emission rates sj(t)

1. Collect samples of the field from each sensor, opportunely

low-pass them, and recover S(2K + 1) coefficients Cn(fj),

2. Build 2K + 1 linear systems as in (10) and retrieve 2K + 1
Fourier coefficients for every emission rate sj(t),

3. Use the annihilation filter method to recover the K innova-

tions from the Fourier series coefficients (13).

When designing the sensor network, certain tradeoffs must be
considered. The number of time measurements per period τ de-
termines the cutoff frequency of the low-pass filter and therefore
the number of Fourier coefficients we can recover. This defines
a clear upper bound on the number of innovations that we can re-
cover. The number of sensors must be at least equal to the number
of smokestacks: the larger it is, the better the conditioning of the
linear systems (10). If we sample the field more frequently, we gain
stability in estimating the innovation amplitudes and locations. Note
that it is possible to use effective denoising techniques to reduce er-
rors due to ill conditioning in (10), such as Cadzow’s method [11].
Furthermore, the maximum number of innovations that we can re-
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Fig. 3: (a) Concentration of the substance at t = 2000s with a constant wind speed μ = 20m/s, when the emission rates are random

piecewise constant functions with K = 10 innovations. (b) Location of the sources (blue crosses) and of the sensors (light blue circles). (c)

Probability of success of Algorithm 1 as a function of the number of innovations K. The sensor network showed in (b) collected 100 Fourier

coefficients Cn(f
i) from each sensor.

trieve depends also on the bandwidth of the Green’s function. In
fact, it might happen that the system matrix in (10) is rank-deficient,
thus limiting the number of Fourier coefficients we can consider. We
leave a more detailed discussion of the bandwidth of the Green’s
function and of diffusion fields in general to [10].

We conclude this section with the proposition that summarizes
the derived results for the recovery of FRI emission rates.

Proposition 2. Let us assume that the emission rates of each of
the M smokestacks have K innovation per period. Assume fur-
ther that we collect enough measurements in space and time so that
ST ≥ M(2K+1) and rank(G(n)) = MK. Then, we can uniquely
recover the locations and the amplitudes of the K innovations using
the annihilation filter method.

5. NUMERICAL RESULTS

For the recovery of emission rates belonging to a subspace HK we
run multiple numerical simulations. As expected, the reconstruction
performance largely depends on the locations of the sensors and on
the wind speed. The wind has a positive impact on the recovery.
Indeed, a higher wind speed is equivalent to having the sensors closer
to the smokestacks.

Given the limited available space, we focus on the second
method, given in Section 4. We placed three sources at ξ1 = (0, 0),
ξ1 = (−20, 10) and ξ1 = (20, 10). Each source has K random
innovations. We measure the field with S = 8 sensors placed at
random. In Fig. 3, we show the percentage of successful recon-
structions as a function of the number of innovations, together with
two plots representing the field at a particular time instant and the
locations of sources and sensors. We underline the following point:
the number of recoverable innovations depends on the bandwidth of
the Green’s function g(x, t) and not on the number of sensors, as
soon as S ≤ M . In fact, the performance starts to decrease when the
low-pass effect of the diffusive phenomena prevents us to recover a
sufficient amount of Fourier coefficients Cn(sj).

6. CONCLUSION

We considered the problem of estimating the emission rates of
smokestacks, releasing a substance that is subsequently dispersed in
the atmosphere.

We proposed two reconstruction techniques for two different
signal models, based on local measurements collected by a sensor
network. We defined sufficient conditions such that the reconstruc-
tion is successful and stable. Our experiments align with the theory
and show that exact reconstruction is feasible when the proposed
conditions are satisfied.

These techniques can be applied to other sensing scenarios,
where a linear field driven by time-varying sources is sampled by a
sensor network in space and time. In the future, we will study two
important aspects of the reconstruction stability: the optimal sensor
location and the bandwidth of the Green’s function.
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