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ABSTRACT

This paper deals with the recovery of signals that admit an
approximately sparse representation in some known dictio-
nary (possibly over-complete) and are corrupted by addi-
tive noise. In particular, we consider additive measurement
noise with bounded �p-norm for p � 2, and we minimize
the �q quasi-norm (with q ∈ (0, 1]) of the signal vector.
We develop coherence-based recovery guarantees for which
stable recovery via generalized basis-pursuit de-quantizing
(BPDQp,q) is possible. We finally show that depending on
the measurement-noise model and the choice of the �p-norm
used in the constraint, (BPDQp,q) significantly outperforms
classical basis pursuit de-noising (BPDN).

Index Terms— Sparse signal recovery, sparse estimation,
de-noising, de-quantizing, deterministic recovery guarantees.

1. INTRODUCTION

We consider the recovery of the sparse vector x ∈ C
na

from m linear and non-adaptive measurements

z = Ax+ n, (1)

where A ∈ C
m×na , na � m is a dictionary (i.e., a matrix

having columns with unit �2-norm) and n ∈ C
m represents

additive measurement noise. We consider a general noise
model where ‖n‖p � η for a given p � 2 and some known
or estimated bound η. Algorithms making use of the �2-norm
of the noise, i.e., with p = 2, have been extensively stud-
ied in [1–4] for both the strictly-sparse and approximately-
sparse case (see Section 2). Virtually all existing recovery
guarantees rely on finding a feasible solution with smallest
�1-norm. However, as demonstrated in [5, 6], other �q quasi-
norms (with q ∈ (0, 1]) can also be used—our results also
give recovery guarantees for this case. The problem outlined
above finds applications in, for example, image restoration [7]
and de-quantization of audio or video signals [8, 9].

For example, a linear quantizer Qα(·) rounds each entry
of an m-dimensional signal vector y to the nearest integer
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multiple of α > 0. The quantized signal is z = Qα(y) =
y + n, where n depends on y and has maximum value α/2.
We will show that if y = Ax has a sparse representation x in
dictionary A, then we can stably recover y from z if certain
conditions on A and the sparsity of x are satisfied.

Contributions: We develop coherence-based recovery
guarantees providing conditions when we can stably recover
x from z in (1) using generalized basis-pursuit de-quantizing
(BPDQp,q). In particular, we extend existing coherence-
based recovery guarantees to the more general case p � 2
and 0 < q � 1. Finally, we provide simulation results
to demonstrate the importance of choosing the �p-norm in
accordance with the considered measurement-noise model.

Notation: The number of nonzero components of the vec-
tor x (the sparsity) is denoted by nx = ‖x‖0 and suppk(x)
designates the indices of the k largest components (in magni-
tude) of x; when S is a set of indices, xS is the vector that
agrees with x on S and is 0 elsewhere. The coherence μ of
A is defined as μ � maxi �=j |〈ai,aj〉|, where ai is the ith
column of A.

2. BACKGROUND

As mentioned above, the special case p = 2 was investigated
previously in [1–4]. The following well-known result guar-
antees the stable recovery of approximately sparse signals x
from z in (1) using basis pursuit de-noising (BPDN).

Theorem 1 ([3, Thm. 2.1] and [4, Thm. 1]). Let z = Ax+n
with ‖n‖2 � η and X = suppnx

(x). If

nx = ‖x‖0 <
(
1 + μ−1

)
/2, (2)

then the solution x̂ of

(BPDN) minimize ‖x̂‖1 s.t. ‖z −Ax̂‖2 � ε2,

with η � ε2 satisfies

‖x− x̂‖2 � C0(ε2 + η) + C1 ‖x− xX ‖1 ,
where C0 and C1 are constants that depend only on μ and nx.

In the absence of measurement noise, we have η = 0,
which, for ε2 = 0, gives the classical (BP) recovery result [1].
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Related recovery guarantees were also developed in [10] and
are based on the restricted isometry constant (RIC) δk of the
dictionary A. For example, in [9], the (BPDN) problem was
extended to basis-pursuit de-quantizing

(BPDQp) minimize ‖x̂‖1 s.t. ‖z −Ax̂‖p � εp,

for p � 2. Corresponding recovery guarantees require the
extended restricted isometry property (RIP) (p, q) of order k.
A matrix A is said to satisfy the extended RIP if there exist
constants δk > 0 and μp,q > 0 such that [9]

μq
p,q (1− δk) ‖x‖qq � ‖Ax‖qp � μq

p,q(1 + δk) ‖x‖qq , (3)

for every ‖x‖0 � k. The following theorem guarantees stable
recovery using (BPDQp).

Theorem 2 ([9, Thm. 2]). Let z = Ax+ n with ‖n‖p � εp
and X = suppnx

(x). If the extended RIP with (p, 2) of order
3nx is satisfied, then the solution x̂ of (BPDQp) satisfies

‖x− x̂‖2 � C2εp +C3 ‖x− xX ‖1 ,
where C2 and C3 depend only on δnx , δ2nx and δ3nx .

The major drawback of RIP-based recovery guarantees is
the fact that no deterministic construction is known that lead
to matrices satisfying the RIP. One attempt to arrive at recov-
ery guarantees that can be computed efficiently are obtained
by bounding the extended RIP in terms of the coherence pa-
rameter μ. For p � 2, q = 1, and k = 3nx, it follows from
Lemmas 4 and 6 that δ3nx

� μ(3nx−1) in (3), implying that
the matrix has the extended RIP (p, 2) of order 3nx if

nx <
(
1 + μ−1

)
/3. (4)

We emphasize, however, that this recovery condition is
stricter than that for (BPDN) in (2). We next show that a di-
rect proof for (BPDQp) improves upon (4) and results in the
same coherence-based recovery condition as for (BPDN).

3. COHERENCE-BASED RECOVERY GUARANTEES

We consider a generalized version of (BPDQp), referred
to as generalized basis pursuit de-quantizing (BPDQp,q),
where we minimize the �q quasi-norm (for 0 < q � 1) of the
vector x̂

(BPDQp,q) minimize ‖x̂‖q s.t. ‖z −Ax̂‖p � εp.

The following theorem guarantees the stable recovery of x
using (BPDQp,q) if (5) is satisfied.

Theorem 3. Let z = Ax + n with ‖n‖p � η and X =

suppnx
(x). If

nx <
1

1 + αqβq

(
1 + μ−1

)
, (5)

where αq = 21/q−1 and βq = (nx)
1/q−1, then the solution,

x̂, of (BPDQp,q) with η � εp satisfies

‖x− x̂‖2 � C4 m
1
2− 1

p (η + εp) + C5 ‖x− xX ‖1 , (6)

where C4 and C5 depend only on μ, nx and q, but not on p.

Proof. See Appendix A for the proof.

Note that in the case q = 1, we have αqβq = 1, and (5)
gives the same condition as (2). Moreover, for q = 1 and
p = 2, we get the same constants as in Theorem 1. Hence,
Theorem 3 results in a better (i.e., less restrictive) recovery
guarantee than that obtained in (4).

An important question to ask is, how does this result com-
pare to the existing results for (BP DN) given that they both
have the same condition for stable recovery? Do we get an
improvement by using a different norm constraint? To this
end, we consider the quantization example given in Section 1,
with α = 2τ . In this case, ‖n‖∞ � τ and ‖n‖2 � √

mτ ,
and by setting ε∞ = τ , we get the recovery condition

‖x− x̂∞‖2 � 2C0

√
mτ +C1 ‖x− xX ‖1 . (7)

But applying Theorem 1 with ε2 =
√
mτ leads to same re-

covery bound as in (7), implying that using a more suitable
norm does not necessarily result in better analytical recovery
guarantees. However, as shown next, the use of (BPDQp)
can give vastly superior recovery performance in practice.

4. SIMULATION RESULTS

4.1. Comparison of different norms

We first demonstrate the impact of the �p-norm on the re-
covery performance. Take A to be a randomly sub-sampled
Hadamard matrix of dimension 128× 256, and assume x has
nx = 8 non-zero entries. The measurement noise is gen-
erated according to the following models: (i) i.i.d. Gaussian
with zero mean, (ii) uniformly distributed random noise on an
interval or discrete set, and (iii) noise as obtained via quanti-
zation. In each case, we normalize the signal to have unit
energy and choose the noise variance so that the expected
signal-to-noise-ratio SNR is 10 dB. Note that we only con-
sider the case q = 1, since for q < 1, (BPDQp,q) is not
a convex optimization problem. We use CVX [11] to solve
the optimization problems and consider a genie-aided norm
bound εp = ‖n‖p, which is the smallest bound guaranteeing
that the correct solution lies in the feasible set.

In Fig. 1, we plot the mean-square error MSE, obtained

by averaging ‖x− x̂‖22 / ‖x‖22 over 1 000 Monte-Carlo trials.
For each noise model, we plot the MSE relative to the norm
constraint that gives the lowest MSE for that noise model. Ob-
serve that as the noise becomes less concentrated around the
mean, higher order norms seem to perform better e.g., when
the noise is uniformly distributed on [−1, 1], the �4 norm con-
straint performs best, but as the noise clusters around ±1, e.g.,
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Fig. 1. Relative MSE for different noise models. “Quant”

refers to quantization noise, I1 = [−1,−0.5] ∪ [0.5, 1] and

I2 = [−1,−0.9] ∪ [0.9, 1]. Here, nx = 8 is considered;

similar behavior is observed for other sparsity levels.

with U(I2), the �64 norm gives better performance. This im-
plies that the choice of the norm to be used in the constraint of
(BPDQp,q) is important and should be chosen in accordance
with the considered measurement noise model.

4.2. De-quantization of band-limited audio signals

We now reconstruct a quantized audio signal. We take m =
256 sample segments of Mozart’s Quintet K.452 at random,
quantize it to 4 bit precision and reconstruct using (BPDQp).
We plot the resulting SNR = ‖y‖2 / ‖Ax̂− y‖2 (y is the
unquantized signal) in Fig. 2, relative to the performance of
(BPDN). We use two discrete cosine transform (DCT) ma-
trices of dimension m × n (n = 256 or 512) as dictionaries.
When n > m, the dictionary is overcomplete and may lead to
a sparser vector x. Note that here we deal with approximately
sparse vectors. If we know ‖n‖p (which is often not the case),
then using the �3 norm offers slightly improved reconstruction
SNR (≈ 0.5dB). However, if we only have an upper-bound
for the noise, e.g., εp = 2−4m1/p (which is the �p-norm of
the noise in the worse case scenario), then we see that higher-
order norms offer a significant improvement over (BPDN).
Using an overcomplete DCT matrix, seems to make little dif-
ference, when compared to the standard DCT matrix.

5. CONCLUSION

In this paper, we have generalized the coherence-based re-
sults of [3, 4] to include the cases where a sparse signal is
corrupted by noise with bounded �p norm (p � 2). We have
shown that by using the appropriate optimization program, we
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n = 256, εp = ‖n‖p n = 256, εp = m
1
p /16

n = 512, εp = ‖n‖p n = 512, εp = m
1
p /16

Fig. 2. Reconstruction SNR (relative to the �2 case) of an

audio signal recovered after 4 bit quantization.

can achieve improved recovery performance when compared
to solving (BPDN). Furthermore, our analytical guarantees
also enable the stable recovery if we minimize the �q quasi-
norm (0 < q � 1) of x. We presented simulation results
to demonstrate that the choice of the norm employed in the
constraint is an important design consideration and should be
chosen in accordance with the measurement noise model for
optimum performance.

A. PROOF OF THEOREM 3

We now present the proofs of our results for (BPDQp,q). In
this section, the dual p′ of a number p ∈ [1,∞] satisfies 1/p+
1/p′ = 1. We first restate a number of well-known bounds.

Lemma 4 (Section 2.8 of [12]). For any x ∈ C
m, 1 � p �

s � ∞ with duals p′ and s′

‖x‖p m1/p′ � ‖x‖s m1/s′ . (8)

Lemma 5. For any a, b ∈ C
m, 0 < q � 1, p � 1 and

αq � 21/q−1, we have

‖a‖1 � ‖a‖q � m
1
q− 1

p ‖a‖p (9a)

(|a|q + |b|q) 1
q � αq|a|+ αq|b| (9b)

‖a‖qq − ‖b‖qq � ‖a− b‖qq (9c)

‖a+ b‖q � αq

( ‖a‖q + ‖b‖q
)
. (9d)

Proof. Equation (9a) is in [12, §2.8] and (9b) follows from the
case with m = 2 and p = 1. Equation (9c) follows by apply-
ing Jensen’s inequality to the mapping t 
→ tq . Finally, (9d)
is a consequence of (9b) and (9c).

Lemma 6. Let A ∈ C
m×na have columns of unit �2 norm.

Let μ be its coherence and x ∈ C
na\{0} be nx-sparse. Then

‖x‖22 (1− μ(nx − 1)) � ‖Ax‖22 � ‖x‖22 (1 + μ(nx − 1)) .

Proof. The proof follows by bounding the off-diagonal en-
tries of A∗A with the coherence parameter μ and applying
Geršgorin’s disk theorem [13, Thm. 6.1.1].

3671



Proof of Theorem 3. Set h � x̂−x, and let X be the support
of the best nx-sparse approximation to the signal x. The goal
is to bound ‖h‖2. Write A∗A = 1+M, so that M has a zero
diagonal, then

‖Ah‖22 = ‖h‖22 + h∗Mh � ‖h‖22 − μ(‖h‖21 − ‖h‖22).
Rearranging this result leads to

‖h‖22 � ‖Ah‖22 + μ ‖h‖21
1 + μ

(8)

�
γ2
p ‖Ah‖2p + μ ‖h‖21

1 + μ
, (10)

with γp = m
1
2− 1

p . First we have the so-called tube constraint

‖Ah‖p � ‖Ax− z‖p + ‖Ax̂− z‖p � η + εp. (11)

Since x̂ is a minimizer, we have

‖x‖qq = ‖xX c‖qq + ‖xX ‖qq � ‖x̂‖qq
= ‖hX c + xX c‖qq + ‖hX + xX ‖qq
(9c)

� ‖hX c‖qq − ‖xX c‖qq − ‖hX ‖qq + ‖xX ‖qq ,
which corresponds to the cone constraint and

2 ‖xX c‖qq + 2 ‖hX ‖qq � ‖hX c‖qq + ‖hX ‖qq = ‖h‖qq . (12)

With (9b), we arrive at

2
2
q−1

(
‖xX c‖q + ‖hX ‖q

)
� ‖h‖q . (13)

To bound ‖hX ‖q set κx =
√
1 + μ(nx − 1) and θx =

n
1/q−1/2
x /(1− μ(nx − 1)), which enables us to write

‖hX ‖2 ‖hX ‖q
(9a)

� n
1
q− 1

2
x ‖hX ‖22 � θx ‖AhX ‖22

= θx(Ah)∗(AhX )− θx(AhX c)∗(AhX )

� θx ‖Ah‖2 ‖AhX ‖2 + θxμ ‖hX c‖1 ‖hX ‖1
(9a)

� θx ‖hX ‖2
(
κxγp(η + εp) + μ

√
nx ‖hX c‖q

)
. (14)

Now, we can use (12) and (9b) to bound ‖hX c‖q

‖hX c‖q � 2
1
q−1

(
2

1
q ‖xX c‖q + ‖hX ‖q

)
.

Combining with (14) and (9a) we arrive at

(1−θxμαqn
1
2
x ) ‖hX ‖q�θx(κxγp(η+εp)+μαqn

1
2
x ‖xX c‖q).

If we assume that 1− θxμ2
1
q−1 > 0, that is

1

μ
+ 1 > (nx)

1
q 2

1
q−1 + nx = nx

(
(2nx)

1
q−1 + 1

)

which implies (5). We obtain the desired result by combining

the last inequality with (10), (11), and (13), and with constants

C0 =
1√
1 + μ

+
2

1
q αq

√
μnx

√
1 + μ(nx − 1)√

1 + μ(1− μ((1 + αqβq)nx − 1))

C1 =
αq

√
μ
[
μnx

(
αq2

1
q − 1− αqβq

)
+ 1 + μ

]
√
1 + μ (1− μ((1 + βqαq)nx − 1))

,

where αq = 21/q−1 and βq = n
1/q−1
x .
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