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ABSTRACT

This paper deals with the deconvolution of faint diffuse astronomi-
cal sources buried in the PSF sidelobes of surrounding bright com-
pact sources, and in the noise. We propose a sparsity promoting
restoration model which is based on highly redundant, shift invari-
ant dictionaries, and which is hybrid in its sparsity priors. On one
hand, the image to be restored is modelled using sparse synthesis
priors as a sum of few atoms (objects) which, as opposed to classi-
cal synthesis-based priors, are unknown. On the other hand, these
objects are iteratively estimated and deconvolved through analysis-
based priors. The faint diffuse source is deconvolved once the data
has been cleaned from all brighter sources’ contributions. Compara-
tive numerical results show that the method is efficient and fast.

Index Terms— Sparse priors, Analysis, Synthesis, Deconvolu-
tion, Wavelets

1. INTRODUCTION: DATA MODEL AND SPARSE PRIORS

A new generation of radio interferometers (LOFAR, ASKAP,
MeerKAT,. . . ) are being built as instrumental and scientific pathfind-
ers of the world’s largest radio telescope, the Square Kilometre
Array. Thanks to the exploitation of massive computing, dedicated
signal processing, innovative antenna design, and to the consequent
increase both of their bandwidth and of their instantaneous field
of view, these instruments will allow to survey the sky at unprece-
dented sensitivity and resolution in a wide region of the radio band.
Surely with these telescopes will come new astrophysical science,
but new image processing challenges as well, in particular the ability
of restoration algorithms to recover faint and diffuse radio sources.

In this paper, X denotes a matrix, X an operator, x and Xi (the
ith vector column of X) are vectors, x[k] is the kth entry of x, x and
X are scalars. Without loss of generality, images are considered as
vectors. With these notations, the data model in radiointerferometry
reads [1]:

y = F†M†WMFx+ n = Hx+ n, (1)

where y ∈ R
N represents the data, also called the dirty map, F is the

Fourier transform and F† its conjugate transpose, W is an N × N
diagonal weighting-matrix including various operations (calibration,
signal to noise weighting), M is an N × N diagonal matrix with
ones and zeros on the diagonal, whose ones select available Fourier

samples, x ∈ R
+N

is the unknown image of size N , n ∈ R
N is

the noise. This imaging system corresponds essentially to an op-
tical linear filter whose transfer function is described by WMF.
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This transfer function has many zeros, making the problem of re-
constructing x from y under-determined and ill-posed. The ma-
trix H = F†M†WMF corresponds to a convolution, with a shifted
version of the Point Spread Function (PSF) as each of its columns.
In radiointerferometry, the PSF has typically numerous, slowly de-
creasing sidelobes due to the sparse sampling of the Fourier-space.
This makes the recovery of faint objects particularly difficult when
surrounding sources are orders of magnitude brighter.

In this framework, satisfying restoration methods must use a pri-
ori knowledge on x, such as positivity or information about the ge-
ometry of the image. Besides, the restoration algorithms used in ra-
dioastronomy cannot have arbitrary computational costs, as the con-
sidered images have millions of pixels. The problem of restoring
faint diffuse sources which are submerged by the contribution of the
sidelobes of brighter sources has lead us to a fast restoration method
which exploits positivity, and sparse priors in a hybrid manner.

Considering model (1), where n is assumed for now to be an
independent and identically distributed (i.i.d.), zero-mean, unit vari-
ance white Gaussian noise, sparsity-promoting models can build on
two kinds of priors: synthesis and analysis [2].

In the synthesis approach, the solution x is sparsely synthesized
by atoms of a given full rank dictionary S of size (N,L): x is written
as x = Sγγγ, where γγγ (the synthesis coefficients vector) is sparse. The
sparse synthesis solution x∗

S , also interpretable as a Maximum A
Posteriori (MAP) solution, is obtained by:

x∗
S = S.{argmin

γγγ

1

2
‖ HSγγγ − y ‖2 +μp ‖ γγγ ‖pp}, (2)

where μp is a hyper parameter that tunes the a priori penalty (μp is
related in the MAP framework to the parameters of a Generalized
Gaussian prior on γγγ). The l0 quasi-norm is the most natural sparsity
measure. Yet, to ensure the convexity of the resulting cost function,
it is often replaced by the l1 norm ||.||1, which still promotes sparsity
and correspond to a Laplacian prior on γγγ.

In contrast, the analysis approach consists in finding the solution
x that is not correlated with some atoms of a dictionary A of size
(N,L): ATx is sparse. The sparse analysis solution is:

x∗
A = argmin

x

1

2
‖ Hx− y ‖2 +μp ‖ ATx ‖pp . (3)

Note that the synthesis prior is on the synthesis coefficients γγγ, while
the analysis one is on the projection a = ATx of the signal on an
analysis dictionary A.

While both approaches are equivalent when A and S are square
and invertible, with A = S−1, they yield in general different solu-
tions for overcomplete dictionaries (N < L) - which are required
for efficient image restoration [2]. Since natural images can be ap-
proximated by few atomic elements in such dictionaries, the synthe-
sis approach is considered as more intuitive. Its design simplicity
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(in greedy approaches) has also made it more popular in image pro-
cessing applications. However, the solution is restricted to a column
subspace of the synthesis dictionary, so that the significance of each
selected atom is important. On the other hand, the analysis approach
may be more robust to false detections since the signal is not built
from a few number of atoms [2]. The present paper does not intend
to investigate how the two approaches compare, but rather proposes
a method mixing both approaches.

For large images, greedy approaches are often preferred to opti-
mization methods solving (2) or (3), thanks to their lower complex-
ity. In classical greedy approaches (typically CLEAN [3] in radio
interferometry - an algorithm similar to the Matching Pursuit , using
H as a dictionary of shifted PSFs- and its multiresolution variants),
selection or removal of atoms is done one by one. These approaches
have the capability of progressively revealing faint features initially
buried in the contribution of brighter elements. However, for im-
ages with millions of pixels and even more analysis and synthesis
coefficients, they can be very time-consuming.

These considerations have led us to consider an approach that
consists in analysing the data with a highly redundant dictionary
adapted to astronomical images (Isotropic Undecimated Wavelet
Transform, IUWT, Sec. 2), and localizing the sparse significant
analysis coefficients by packets. Each object assigned to a set of
significant analysis coefficients is then deconvolved and subtracted
in a synthesis manner. The deconvolved objects are thus considered
as atoms that are estimated from the data (Sec. 3).

2. ISOTROPIC UNDECIMATED WAVELET TRANSFORM
The IUWT [4] presents interesting features for the considered prob-
lem. First, its adaptability to astronomical objects, since most of
them are quasi isotropic (stars, galaxies, galaxy clusters...). Second,
its rapidity as a transform. Third, the non decimation of the IUWT
guarantees a fine modelling through its translation invariance.

2.1. Analysis and Synthesis with the IUWT
The IUWT decomposes an image of size N up to a level J into a
set of analysis coefficients a = [wT

1 , ...,w
T
J , c

T
J ]

T , where cJ is the
smoothest approximation of the original image and wj are the detail
coefficients sets at the scale indexes j = 1, . . . , J (the indexing is
such that j = 1 represents the highest frequencies).

An efficient way to obtain a is to use the à trous algorithm [5].
Starting from the original image as the initial approximation coef-
ficients set c0 = x, the approximation and detail coefficients can
respectively be obtained iteratively by:

cj+1[k] =
∑
m

h[m]cj [k +m2j ] = (h
(j) ∗ cj)[k], (4)

wj+1[k] =
∑
m

g[m]cj [k +m2j ] = (g(j) ∗ cj)[k]. (5)

where h
(j)

[k] equals h[−k] if k/2j is integer and 0 otherwise, same
for g(j)[k]. The decomposition ends up with a vector a of (J+1)N
analysis coefficients.

The reconstruction or synthesis of c0 from a=[wT
1 , . . . ,w

T
J , c

T
J ]

T

is obtained by the iterative recovery of each cj :

cj [k] = (h̃(j) ∗ cj+1)[k] + (g̃(j) ∗wj+1)[k], (6)

for j = J − 1, . . . , 0, where h̃ and g̃ constitute the synthesis part of
the filter bank.

The cascade analysis-synthesis guarantees perfect reconstruc-

tion if the filter bank {h, g, h̃, g̃} verifies, in the z-transform do-

main, the condition: H(z−1)H̃(z) + G(z−1)G̃(z) = 1 (no anti-
aliasing condition is required thanks to redundancy). In addition, the

filters should be i) compact since we are doing successive convolu-
tions, ii) regular to avoid artifacts, iii) even-symmetric to guarantee
the isotropy of the transform (h = h, g = g). Separability of the
filters is not required but it allows fast computations since convolu-
tions is then done successively on the rows and on the columns. The
extension of the à trous algorithm above in two dimensions is in this
case straightforward [5]. In [4], three different IUWT filter banks
are exposed. In the results below, we focus on the filter bank called
of ”second generation” for which we obtained better results. In this

bank, the synthesis atoms are positive and h = h̃. The high pass
filter h is derived from the B-spline function since it nearly satisfies
the three conditions i)−iii) evoked above. The high pass analysis
filter is g = δ − h ∗ h, its corresponding synthesis filter is g̃ = δ.

2.2. IUWT Filter bank : analysis and synthesis dictionaries

Fig. 1. Atoms of the analysis and synthesis dictionaries obtained by
the considered IUWT filter bank for J = 4.

Reasoning now in terms of dictionaries, the IUWT analysis coef-
ficients vector a can be seen as a = [wT

1 , . . . ,w
T
J , c

T
J ]

T = AT c0,
where A is the IUWT analysis dictionary resulting from the filters

{h, h̃,g, g̃}. A can be written as A = [A(1), . . . ,A(J+1)], where
each A(j) is a sub-dictionary of size (N,N ), having shifted ver-

sions of the same analysis atom d
(a)
j at all pixels positions (Fig.1,

top row). For instance, the analysis coefficients w1 correspond to

N correlation coefficients of shifted versions of d
(a)
1 with the orig-

inal image. Equivalently, c0 can be recovered as c0 = Sa, where
S = [S(1), . . . ,S(J+1)], the S(j) being sub-dictionaries of size
(N,N ), whose columns are shifted versions of the synthesis atoms

d
(s)
j (Fig.1, bottom row).

An example of analysis coefficients a is shown in Fig. 2. Each
astronomical object is associated to a set of few coefficients living at
different scales (e.g., the small galaxy circled in green at the bottom
right is visible mostly in small regions of scales w2,w3,w4, c4 -
red circles). As a consequence, different objects can be identified
and separated from the different ”fingerprints” they leave on several
scales. Below, objects will be denoted by Xi and the corresponding
”fingerprint” analysis coefficients by αααi. Clearly, each object leads
to a sparse signature in the overall decomposition. The process of
associating a small set of significant coefficients αααi to one object is
called object identification below. Once identified, each such set of
coefficients will be used to deconvolve the objects one by one.

3. ITERATIVE ANALYSIS-BY-SYNTHESIS APPROACH
An astronomical image x can often be modelled as a sum of an un-
known number P of objects Xi (either compact or diffuse sources):

x =
P∑

i=1

Xi = X1P , (7)

where X = [X1, . . . ,XP ] can be seen as an unknown synthesis
dictionary of size (N,P ), P << N and 1P is a vector of P ones.
The Xi, columns of X, are the positive unknown objects composing
x. With (7), the convolutive model (1) becomes :

y = HX1P + n, with X ∈ R
+N

and P << N. (8)
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Fig. 2. IUWT analysis of Andromeda (bottom right) up to J =
4. The analysis coefficients circled in red correspond to the galaxy
circled in green.

Model (8) is sparse in synthesis, since the image x is reconstructed
from few atoms Xi. However, there are two differences with the
sparse-synthesis model presented in Sec. 1. First, the atoms Xi

are unknown and must be estimated from the data. This estimation
makes the task harder, but has the advantage that x will not be not
restricted to a small column subspace of a generic dictionary. Sec-
ond, the number of atoms P may be very small in comparison with
the number of atoms of a generic dictionary which would be neces-
sary to finely synthesize a real astronomical image. Thus, we save
substantial computation time with this synthesis model.

When estimating the objects Xi as well as their number P , care
must be taken for faint large objects that are buried in the PSF lobes
of the brighter objects. Deconvolution will thus be done in an iter-
ative manner, at first on the brightest object whose contribution will
be subtracted from the data, enabling the restitution of the faint ob-
ject at last. To do this we need at each step an object identification
strategy.

3.1. Object identification
To identify significant information related to the brightest object, we
have opted for an object identification strategy inspired from [6].
First, the object identification is not done directly on a, the noisy
analysis coefficients of the data, but rather on a significant analysis
support (SAS), that is, the support of those analysis coefficients that
are significant with respect not only to noise, but also to convolution.
• SAS with unknown noise level: It is found in two steps. The first
step is to determine which analysis coefficients are significant w.r.t.
noise statistics. For an image composed of an i.i.d. Gaussian noise
of standard deviation (s.d.) σ, the s.d. at each scale resolution σj is :

σj = σ. ‖ d
(a)
j ‖, (9)

where ‖ d
(a)
j ‖ is the l2 norm of the analysis atom d

(a)
j of level j.

Since the analysis coefficients set w1 contains the highest frequen-

cies, σ can be estimated from σ1, the s.d. of w1, by σ̂=‖d(a)
1 ‖−1σ̂1,

with σ̂1 = median(| w1 − median(w1) |)/0.6745 [4]. The s.d. at
other scales {σ̂j} can be obtained by relation (9) with σ = σ̂. The
significant coefficients can then be obtained as in classical denois-
ing by τj-thresholding, where τj is typically in the range [3σ̂j 5σ̂j ].
The resulting set of non zero coefficients can be stored in a vector
m̃. The second step accounts for convolution. In radiointerferome-
try, the PSF has a large number of sidelobes (e.g. Fig.4, top right).
The information related to one object is consequently spread very
far over the data image, while being in the same time contaminated
by other objects’ contribution and by noise. Since we wish to detect
compact bright structures first, we want to focus at each step on the
main lobe of the brightest object. Consequently, we further threshold

the coefficients of m̃ at each scale j using a threshold proportional to
the maximum |wm,j | of the coefficients of m̃ at scale j (a threshold
value of |wm,j/2| was used in the simulations below). The brightest
object is then likely to have a good fraction of its coefficients among
the resulting set of non zero coefficients. This set can be stored in
a vector m, whose support is the SAS. The next question is to de-
termine which coefficients in m actually correspond to the brightest
object.

• Objects extraction: We need a few definitions here, adapted
from [6]. A structure is defined as a set of connected (contiguous)
nonzero analysis coefficients of the same scale j. An object will
be characterized by a set of structures of different levels that are
connected in a sense specified below.

We first identify the brightest structure and its level jm as the
structure in the SAS containing the maximum analysis coefficient
|wm|. This structure, sjm , is associated to the brightest object.
Then, the other structures of this object are searched only at scales
(j = 1, . . . , jm − 1), as information of bright compact objects will
still be present at higher frequencies. For instance, the small galaxy
at the bottom right of Fig.2 has its maximum in w4, but still presents
relatively large coefficient in w2 and w3. Then, the structure sjm
of scale jm will be connected to the brightest structure sjm−1 of
scale jm − 1 if the spatial position of the maximum wavelet co-
efficient |wm| in scale jm also belongs to the brightest structure
sjm−1 in scale jm − 1 . If this is the case the process is repeated
between sjm−1 and sjm−2, and so on. Otherwise, the process stops.
The resulting set of connected structures constitute the significant
coefficients identifying the signature of the brightest object in the
data. These coefficients are stored in a sparse vector ααα of dimension
(N(J + 1), 1).

3.2. Algorithm
These ideas lead to the following analysis-by-synthesis algorithm:
• Initialization: Major iteration index i = 0. Initial residual r0 = y
and solution x̂0 = 0. Determine ααα0 corresponding to the brightest
object in r0 as in Sec. (3.1).
• While αααi �= 0 :

− Analysis based deconvolution: Estimate X̂i+1 by solving:

X̂i+1 = argmin
z

‖ αααi − Pαααi(A
THz) ‖2, (10)

where Pαααi(A
THz)[k] = 0 if αααi[k] = 0, and Pαααi(A

THz)[k] =
(AT z)[k] otherwise. An efficient way to solve this problem

is to use the iterative (minor iteration index (k)) projected
Van Cittert scheme [6]:

X̂
(k+1)
i+1 = P+(X̂

(k)
i+1 + S(αααi − Pαααi(A

THX̂
(k)

i+1)), (11)

where P+ is the projector on the positive orthant. The ini-

tial X̂
(0)
i+1 is obtained by applying the reconstruction scheme

(6) on Pαααi(A
T ri) instead of a in (6). Iterations (11) stop if

||X̂(k+1)
i+1 −X̂

(k)
i+1||

2
2

||X̂(k)
i+1||2

does not change significantly (less than 1%

in the results below), in which case we set X̂i+1=X̂
(k+1)
i+1 .

− Synthesis step:
◦ x̂i+1 = x̂i + X̂i+1 = X̂1i+1, X̂ = [X̂1, . . . , X̂i+1].

◦ ri+1 = ri −HX̂i+1.
◦ Determine αααi+1 corresponding to the brightest object in
ri+1 as in Sec. (3.1), and set i = i+ 1.

• End.
The number of deconvolved objects P is the iteration number when

the algorithm stops, and the restored image is x̂ = X̂1P .
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4. RESULTS AND DISCUSSION

Results are given in this section for a simulated image x (N = 5122,
Fig. 4, top left) which contains two compact, bright objects X1 and
X2 (of maximum intensity 255, see the zooms in Fig. 3, top row)
and a diffuse, fainter source X3. As a comparison method, we have
opted for ISRA (Image Space Reconstruction Algorithm, [4]), which
in Astronomy is an efficient and widely used Maximum Likelihood
method under Gaussian noise with positivity constraint. ISRA has
however two drawbacks: first, the number of iterations that yield best
reconstruction can not be known; second, ISRA can not deal with
negative PSFs, as the ones encountered for ASKAP radiointerferom-
eter for instance. Thus, to compare with the proposed method, we
first used a positive convolution kernel (B-spline of order 3). ISRA
at best reconstruction is used for reference. We also show the results
of a state-of-the-art method, an IUWT-regularized version of ISRA,
which has a natural stopping criterion and whose iterative scheme

is [6, 7]: x(k+1) = diag(x
(k)
i )[

HT (Hx(k)+S(Tτj
(AT r(k)))

HTHx(k) ], where

r(k) = y −Hx(k), Tτj denotes the hard-thresholding operator used

on the IUWT-analysis coefficients of r(k) (τj = 5σj).

The results with the positive convolution kernel are shown in
Fig. 3. In this test the Gaussian noise added to the convolved data
has σ = 10, which is 5 times higher than the faint source X3

(||X3||∞ = 2). The criterion to compare how well x̂ approximates

x is the SNR (SNR(x, x̂) = 10 log10
‖x‖2

‖x−x̂‖2 ). The ISRA yields

at best reconstruction a SNR of 18.7 dB (after 10 iterations, image
not displayed). IUWT-regularized ISRA yields a SNR of 18.1 dB
(Fig. 3, bottom row), and the proposed method a SNR of 20.2 dB
(Fig. 3, middle row). Note that the faint component is not recov-
ered by IUWT-regularized ISRA (nor by ISRA), and varying τj in
the range [3σj . . . 5σj ] did not yield noticeable improvement. The
”source” visible in the zoomed region shown in Fig. 3, lower right
corner, is only caused by the saturation of the restituted bright com-
ponents on the [0 2] flux scale. These results show that the proposed
method is very efficient to recover and extract the faint source, and
also that there may be room for improvement in estimating the bright
sources. Our method allows to recover the sources componentwise,
and to evaluate a SNR per source (20.2 dB for X1, 14.7 dB for X2

and 11.7 dB for X3 here), which is not the case of regularized-ISRA.

The second results (Fig. 4) deal with a PSF similar to ASKAP
radiointerferometer (top, right). The dirty map y (top, middle) ob-
tained with this PSF has a SNR of 6.5 dB. Here σ = 1, but the
faint source (||X3||∞ = 8 here) is totally buried in the replica of the
bright sources because of the PSF sidelobes. The proposed method
yields a solution x̂ with SNR= 15.7dB. The faint source (middle
row, right) is very well restored (SNR= 17.7dB). From Fig.4, bot-
tom row, we can see the evolution of the residual ri after successive
subtractions of components HX̂i. The faint diffuse source, initially
invisible in y, appears clearly after subtraction of the bright sources.
The final residual is very similar to noise, confirming that the infor-
mation has efficiently been extracted. The whole process takes a few
minutes on a laptop.

5. CONCLUSIONS

The proposed deconvolution method uses sparse priors in an iterative
analysis-by-synthesis manner with IUWT dictionaries. The restored
image is the sum of deconvolved sources which can be studied inde-
pendently. The presented results show that the method is efficient to
recover faint sources initially buried in bright sources’ contributions,
and it is fast. A modeling effort is needed to better identify the anal-
ysis coefficients of bright sources. The adaptation of the method to
sources with irregular morphologies is also under investigation.

Fig. 3. From top to bottom: objects (Xi) composing the image x of
Fig. 4 top left ; estimated objects by the proposed approach; zoom on
the corresponding regions of the IUWT-regularized ISRA solution.

Fig. 4. From left to right : Top row : Image x=X1+X2+X3, data
y, ASKAP-like PSF (log scale). Middle row: reconstructed com-
ponents (same pixel regions as in Fig. 3 are shown). Bottom row:
residual data r1, r2 and r3 after successive subtractions of HX̂1,
HX̂2, HX̂3. The faint source appears in r2, r3 is close to noise.
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