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ABSTRACT

We propose variants of Alternating Direction Method of Multipli-
ers (ADMM) employing simplified updates under additional assump-
tions. ADMM iteratively solves the minimization of the sum of two
nonsmooth convex functions. Each iterations of ADMM itself con-
sists of solving a certain convex optimization problem which often
requires the use of some iterative solver. Such inner iterations cause
slow convergence. Our proposed algorithms avoid some of inner
iterations by employing simplified updates. An efficacy of the pro-
posed algorithm is shown in an image super-resolution problem. In
this application, the resultant algorithm does not require matrix in-
version which causes inner iterations of the original ADMM. A nu-
merical example in the image super-resolution setting demonstrates
that our proposed algorithms reduce CPU time to about 70–80 per-
cent of the original ADMM.

Index Terms— minimization methods, iterative methods, im-
age enhancement

1. INTRODUCTION

Convex optimization problems arise in many signal and image
processing applications. Recently many researchers have special
interest in algorithms for nonsmooth convex optimization because
in many situations the nonsmooth convex optimization offers more
suitable formulation than the smooth convex optimization.

One candidate of such a desired algorithm is the Alternating Di-
rection Method of Multipliers (ADMM) [1, 2, 3]. ADMM solves the
following minimization problem:

Find (x∗
, z

∗) ∈ S (1)

S := arg min
∀(x,z)∈RN×RM

{f(x) + g(z) | Ax + Bz = c},

where f : R
N → (−∞,∞] and g : R

M → (−∞,∞] are proper
(possibly nonsmooth) lower semicontinuous convex functions (see
for example [4]), and matrices A ∈ R

P×N , B ∈ R
P×M and a

vector c ∈ R
P are given. ADMM generates sequences (xk)k≥0 and

(zk)k≥0, which achieve convergence of the objective function value
to the minimum level. The alternating updates of xk and zk are
defined by solving separately certain minimization problems related
to f or g.

An efficacy of ADMM can be seen in the minimization problem
of f(·) + g(A(·)). That is, the case where p = M , B = −IM

(IM ∈ R
M×M is an identity matrix), and c = 0 is considered.

Then the iteration of ADMM essentially requires only the proximity
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operator [5, 6] of g to update zk while the iterations in the direct
use of other conventional algorithms [6, 7, 8, 9, 10, 11, 12] require
the proximity operator of g(A(·)) that is often hard to compute. The
remaining issue of ADMM is difficulty of the update of xk: Un-
fortunately, the update of xk often requires iterative solvers on each
iteration; these inner iterations cause slow convergence.

In this paper, as candidates of the decisive solution of inner iter-
ations, we propose two variants of ADMM. These variants employ
simplified updates of xk under the following assumptions:
(C1) f : R

N → R is a differentiable convex function and its gra-
dient is Lipschitz continuous with Lipschitz constant L(f) >
0, i.e.1,

‖∇f(x) −∇f(y)‖ ≤ L(f)‖x − y‖, ∀x, y ∈ R
N

,

and (L(f)IN + ρAT A)−1 does not require inner iteration,
(C2) The proximity operator of f : R

N → (−∞,∞] is easy to
compute and an upper bound of the largest eigenvalue of
AT A is known.

Under the case (C1), the update of xk is realized by the unique so-
lution of a certain linear equation. Under the case (C2), the update
of xk is realized by the proximity operator of f . These updates do
not require inner iterations in many cases even if the update of the
original ADMM does.

We consider a single image super-resolution problem as an
application of our proposed algorithms. The single image super-
resolution is a technique to estimate a high-resolution image from
a low-resolution image (see e.g. [13] for single image super-
resolution and [14] for an application of ADMM to multi image
super-resolution problems). The resultant algorithms have closed
form expressions to update xk while a direct application of ADMM
requires a matrix inversion which causes inner iterations. A numeri-
cal example in the image super-resolution setting demonstrates that
our proposed algorithms work appropriately and reduce CPU time
to about 70–80 percent of the original ADMM.

2. ALTERNATING DIRECTION METHOD OF
MULTIPLIERS (ADMM)

The Alternating Direction Method of Multipliers (ADMM) approx-
imates the solution of problem (1). The iterates of ADMM are sum-
marized as

xk+1 ∈ arg min
x∈RN

Lρ(x, zk, yk) (2)

zk+1 ∈ arg min
z∈RM

Lρ(xk+1, z, yk) (3)

yk+1 = yk + ρ(Axk+1 + Bzk+1 − c), (4)

1In this paper, we denote the standard inner product by 〈·, ·〉 and its in-
duced norm by ‖ · ‖.
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where Lρ is the augmented Lagrangian of problem (1), i.e.,

Lρ(x, z, y) := f(x)+g(z)+〈y, Ax+Bz−c〉+
ρ

2
‖Ax+Bz−c‖2

.

Under the assumption of the existence of a saddle point2, say
(x∗, z∗, y∗), of the unaugmented Lagrangian L0, ADMM satis-
fies the following [3]:
(x∗, z∗) is the solution of problem (1), s.t.

(P1) Residual convergence: limk→∞ ‖Axk + Bzk − c‖ = 0 as
k → ∞, i.e., the iterates approach feasibility.

(P2) Objective convergence: limk→∞ f(xk)+ g(zk) = f(x∗)+
g(z∗) as k → ∞, i.e., the objective function of the iterates
approaches the optimal value.

Two minimization problems (2) and (3) are difficult to solve in
general. For example, under a certain mild condition, the calculation
of xk+1 is equivalent to find a vector satisfying

∂f(xk+1) + A
T
yk + ρA

T (Axk+1 + Bzk − c) � 0, (5)

where ∂f is the subdifferential3 of f . This problem is more demand-
ing than the computation of the proximity operator4 of f : for each
z ∈ R

N , proxγf (z) is characterized by the unique x satisfying

∂f(x) + γ
−1(x − z) � 0.

Therefore, application of ADMM is restricted to the case where each
solution of (2) and (3) is obtained easily. Otherwise, (2) and (3) are
solved by some iterative solvers (such a technique can be seen in
[15]).

3. PROPOSED METHODS

3.1. ADM-type algorithm with a simplified update of xk under
(C1)

We introduce a simplified update by employing the minimization of
an upper bound of the augmented Lagrangian Lρ. We adopt a convex
upper bound L̂ρ of Lρ under the assumption (C1), i.e.

Lρ(x, zk, yk) ≤ L̂ρ(x, zk, yk), ∀x ∈ R
N

, (6)

where5

L̂ρ(x, zk, yk) := Lρ(x, zk, yk) − f(x) + f(xk)

+ 〈∇f(xk), x − xk〉 +
L(f)

2
‖x − xk‖

2
.

2A pair (x̄, z̄, ȳ) is a saddle point of the unaugmented Lagrangian L0 if
and only if

L0(x̄, z̄, y) ≤ L0(x̄, z̄, ȳ) ≤ L0(x, z, ȳ),

for any (x, z, y) ∈ R
N × R

M × R
P .

3For a given proper lower semicontinuous convex function f : R
N →

(∞,∞], the subdifferential of f is a set-valued function defined by

∂f(x) := {v ∈ R
N | f(x) + 〈y − x, v〉 ≤ f(y), ∀y ∈ R

N}.

4For a given proper lower semicontinuous convex function f : R
N →

(∞,∞], the proximity operator of f (of level γ > 0) is defined by

proxγf (z) := arg min
x∈RN

„
f(x) +

1

2γ
‖x− z‖2

«
.

5The inequality (6) is guaranteed by a well-known upper bound of f under
(C1) (see e.g. [16]):

f(x) ≤ f(y) + 〈∇f(y), x− y〉 +
L(f)

2
‖x− y‖2, ∀x, y ∈ R

N .

This leads the following algorithm:

xk+1 = arg min
x∈RN

L̂ρ(x, zk+1, yk) (7)

zk+1 ∈ arg min
z∈RM

Lρ(xk+1, z, yk) (8)

yk+1 = yk + ρ(Axk+1 + Bzk+1 − c). (9)

Note that xk+1 is characterized by the following linear equation:

∇f(xk)+L(f)(xk+1−xk)+A
T
yk+ρA

T (Axk+1+Bzk−c) = 0,
(10)

which is easier than the nonlinear equation (5) to obtain a solution
of (2).

The algorithm (7–9) guarantees the existence of (uk)k≥0 and
(vk)k≥0 satisfying (11) in the following theorem and therefore sat-
isfies (P1) and (P2).

Theorem 3.1 ([17]) Suppose that the unaugmented Lagrangian L0

of problem (1) has a saddle point (x∗, z∗, y∗). Let (xk)k≥0 ⊂ R
N

be a sequence which is not necessarily defined by (2). For (z0, y0) ∈
R

M×R
P , define the sequences (zk)k≥0 and (yk)k≥0 by (3) and (4).

If there exists some nonnegative sequences (uk)k≥0 and (vk)k≥1

such that

f(xk+1) ≤ f(x∗) + uk − uk+1 − vk+1

− 〈yk+1, Axk+1 − Ax
∗〉

− ρ〈Bzk − Bzk+1, Axk+1 − Ax
∗〉 (11)

for every k ≥ 1, then the residual convergence (P1) and the objective
convergence (P2) are guaranteed.

3.2. ADM-type algorithm with a simplified update of xk under
(C2)

We introduce a simplified update by replacing the term AT Axk+1

of (5) by λxk+1 − pk; Here, pk is introduced to guarantee (11) and
λ > 0 is any value larger than the largest eigenvalue of AT A for
example λ = tr(AT A). Hence, xk+1 is realized by

∂f(xk+1) + A
T
yk + ρ(λxk+1 − pk + A

T
Bzk − A

T
c) � 0.

This leads our second proposed algorithm:

xk+1 = prox(ρλ)−1f (λ−1(pk − A
T (Bzk − c + ρ

−1
yk)))(12)

pk+1 = (λIN − A
T
A)xk+1 (13)

zk+1 ∈ arg min
z∈RM

Lρ(xk+1, z, yk) (14)

yk+1 = yk + ρ(Axk+1 + Bzk+1 − c) (15)

with an arbitrarily chosen p0 ∈ R
N .

If a saddle point of L0 exists, the algorithm (12–15) fulfills the
condition (11) and satisfies (P1) and (P2) [17].

4. APPLICATION TO SINGLE IMAGE
SUPER-RESOLUTION WITH �1 MINIMIZATION

Single image super-resolution problem is stated as the inversion of
the following linear system

r = DRx̂

where x̂ ∈ R
N is the unknown high-resolution image with N pixels,

r ∈ R
M is a target image with M << N pixels, D : R

N → R
M
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is a down sample operator, and R : R
N → R

N is a blur operator.
Since DR is degraded, a priori information is required to solve this
inverse problem satisfactorily. There are mainly two type problem
formulations to exploit the sparsity of high-frequency components
of the high-resolution image as a priori information.

The first problem formulation is

min
x∈RN

1

2
||DRx − r||2 + μ||F x||1, (16)

where || · ||1 denotes the �1 norm, μ ≥ 0 is the regularization pa-
rameter, and F : R

N → R
K (K ≥ N ) is a certain tight frame

which extracts sparsity of the high-resolution image and satisfies
F T F = IN . We can see that (16) is a special case of (1) under
condition (C1) with f(x) = 1

2
||DRx − r||2, g(z) = μ||F z||1,

A = IN , B = −IN , and c = 0.
Then the first proposed algorithm (7–9) specialized to (16) is

given as

xk+1=
1

L(f) + ρ

“
L(f)xk − R

T
D

T (DRxk − r) − yk + ρzk

”
(17)

zk+1 = F
T proxρ−1μ‖·‖1

(F (xk+1 + ρ
−1

yk)) (18)

yk+1 = yk + ρ(xk+1 − zk+1). (19)

As you see above, the first proposed algorithm for (16) does not
require inner iterations due to no use of any matrix inversion. Note
that the proximity operator of ‖ · ‖1 has an closed-form expression
with O(K) complexity. This operator is highly utilized in context
of sparsity-aware signal processing (e.g., [6, 9, 10, 18]).

On the other hand, the original ADMM algorithm for (16) is
given as

xk+1 =
“
ρIN + R

T
D

T
DR

”−1 “
R

T
D

T
r − yk + ρzk

”
(20)

zk+1 = F
T proxρ−1μ‖·‖1

(F (xk+1 + ρ
−1

yk))

yk+1 = yk + ρ(xk+1 − zk+1).

The calculation of inverse of ρIN +RT DT DR in (20) causes inner
iterations because ρIN + RT DT DR is not circulant or Toeplitz
matrix.

The second problem formulation is

min
x∈RN

ιC(DRx) + ||F x||1, (21)

where

ιC(x) :=

(
0, if x ∈ C,

∞, otherwise,

denotes the indicator function of the nonempty closed convex set

C := {x ∈ R
M | ||x − r|| ≤ ε}.

Problem (21) is also special case of (1) with f(x) = ||F x||1,
g(z) = ιC(z), A = DR, B = −IM , and c = 0. Note that
relationships of f , g, and A are different from the first problem
formulation. In this case, we can assume that condition (C2) holds,
i.e., the proximity operator of f is computed efficiently and an upper
bound λ of the largest eigenvalue of AT A = RT DT DR is known
(e.g. λ = tr(AT A)).

Table 1. Comparison of CPU time (sec) of proposed algorithms and
the original ADMM. Proposed algorithms reduce CPU time to about
70–80 percent of the original ADMM.

1st formulation (16) 2nd formulation (21)
1st algo. ADMM 2nd algo. ADMM
(17–19) (22–25)

512 × 512 172 248 184 253
1024 × 1024 887 1144 920 1207

Then the second proposed algorithm (12–15) can be applicable
to (21) as

xk+1 = F
T prox(ρλ)−1‖·‖1

(F (λ−1(pk + R
T
D

T (zk − ρ
−1

yk))))

(22)

pk+1 = (λIN − R
T
D

T
DR)xk+1 (23)

zk+1 = proxρ−1ιC
(xk+1 + ρ

−1
yk) (24)

yk+1 = yk + ρ(DRxk+1 − zk+1). (25)

Similarly as the first proposed algorithm, the second proposed algo-
rithm (22–25) does not require matrix inversion while the original
ADMM algorithm for (21) does.

5. NUMERICAL EXPERIMENTS

We show performance of the proposed algorithms through image
super-resolution described in Section 4. We use ‘Lena’ image (256×
256 [pixels]; thus N = 65, 536) for a target image r shown in Fig.
1(a), and we consider to make 512 × 512, and 1024 × 1024 high-
resolution images. In this setting, D is the down sample operator by
1 pixel per 4 and 16 pixels respectively, and R = P HHP is the
blur operator where P is the discrete Fourier transform matrix (and
its complex conjugate transpose P H ) and H is a diagonal matrix
determined by 2×2 and 4×4 uniform blur kernels respectively. We
employ a shift invariant redundant Haar wavelet transform with four
levels as F . Parameters are set as μ = 0.003, ρ = 10, λ = 1, and
ε = 0. For the all algorithms, iteration number is fixed as 100.

Fig. 1(b)-(e) show resultant images. The proposed algorithms
work appropriately for interpolating from 256 × 256 to 512 × 512,
and 1024 × 1024.

Table 1 shows a comparison of CPU time measured on a desk-
top computer equipped with an Intel Core i7 2.8-GHz processor
and 8 GB of RAM. Here, ADMM approximates matrix inversion
of the update of xk+1 by the conjugate gradient method6 with accu-
racy 10−20. In this case, proposed algorithms overcome the original
ADMM; proposed algorithms reduce CPU time to about 70–80 per-
cent of ADMM.

6. CONCLUSION

We have proposed two variants of ADMM employing simplified up-
dates of xk under some additional assumptions. Each update often
avoids inner iterations for the update of xk. Hence the proposed
algorithms are applicable to many problems which cause inner iter-
ations in the original ADMM. The efficacy have been examined in
a single image super resolution setting as an example. A numerical
example have demonstrated that proposed algorithms reduce CPU
time to about 70–80 percent of the original ADMM.

6For a given invertible matrix A ∈ R
N×N and b ∈ R

N , we approximate

A−1b by x̄ ∈ R
N such that ‖Ax̄−b‖

‖b‖
≤ δ with user-defined accuracy

δ > 0. x̄ is obtained by the use of iterative solvers. This technique can be
seen in [15].
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(a) Target image, 256 × 256 [pixels] (b) 1st algorithm (17–19), 512 × 512. (c) 1st algorithm (17–19), 1024 × 1024.

(a’) Target image (portion) (d) 2nd algorithm (22–25), 512 × 512. (e) 2nd algorithm (22–25), 1024 × 1024.

Fig. 1. Portions of image super-resolution results on the test image ’Lena’.
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