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ABSTRACT

In this paper a reinforcement learning-based distributed sensing pol-
icy is proposed for cognitive radio networks. The proposed sens-
ing policy is controlled by a fusion center that employs action-value
learning to focus the search for idle frequencies to those parts of the
spectrum that persistently provide a high data rate. The fusion cen-
ter learns the local sensing performances of the secondary users and
attempts to minimize the number of assigned users for sensing under
a constraint on the global detection probability. A heuristic polyno-
mial time algorithm iteratively employing the Hungarian method is
proposed for finding a feasible assignment that minimizes the num-
ber of active sensors. Simulation results show that the proposed al-
gorithm is able to find near-optimal solutions in practise significantly
faster than an exact branch-and-bound search.

Index Terms— Cognitive Radio, Sensing policy, Reinforce-
ment learning, Hungarian method, Multi-armed bandit

1. INTRODUCTION

Cognitive radio (CR) is a promising new technology for supplying
radio spectrum for future wireless services in an agile manner. CRs
explore the radio spectrum in the hope of finding idle frequencies
which they could exploit without interfering with the primary users
(PUs). In order to identify such spectral opportunities the CRs need
to sense the radio spectrum. The problem of searching for idle fre-
quency bands over a large bandwidth can be viewed as a restless
multi-armed bandit problem. The spectrum may be seen to consist of
NB subbands (arms) that provide stochastic throughputs (rewards)
Rt(i), i = 1, ..., NB , at time t with means μ(i) = E[Rt(i)]. The
CR network, consisting of NS secondary users (SUs), then selects
a set of subbands B, |B| = L ≤ NB , to sense so that the expected
sum rate is maximized. After choosing the subbands to be sensed,
the CR network decides which SUs are assigned for sensing.

When lacking a parametric model for the dynamics of the PU
activity, or if the model order may change abruptly, it is obviously
not possible to find an optimal sensing policy. In such cases rein-
forcement learning (RL) methods become attractive. RL methods
reinforce good actions by selecting more likely those actions that
have recently provided large rewards. In a spectrum sensing policy
actions correspond to selecting the frequency bands to be sensed and
the SUs to do the sensing. The rewards for these actions are selected
such that they reflect the achievable data rates from the subbands and
the sensing performances of the SUs. An important feature of rein-
forcement learning methods is the exploration-exploitation trade-off,
which emerges here when the CR has to decide whether to exploit the
seemingly best frequency bands at the moment or to explore other
bands in the hope of finding even better ones.

This paper extends our previous work in [1] by developing a
practical heuristic algorithm for finding feasible sensing assignment
for identifying idle spectrum. The contributions of this paper are
the following. A novel reinforcement learning-based sensing policy
with heuristic minimization of sensing resources is proposed. The
proposed policy balances between exploitation and exploration us-
ing the ε-greedy method [2]: with probability ε (where typically ε
is small) the policy goes into exploration phase and with probabil-
ity 1 − ε the policy goes into exploitation phase. Exploration and
Exploitation phases will be elaborated in section 2. The sensing pol-
icy employs action-value learning to focus the search for idle fre-
quencies to those parts of the spectrum that persistently provide high
data rate. The sensing policy assigns the SUs for sensing such that
the number of active SUs is minimized under a constraint on the
global sensing performance. For the minimization problem a heuris-
tic polynomial time algorithm that provides near-optimal solutions
in practical scenarios is developed. The proposed algorithm works
iteratively in a greedy manner by assigning one SU per subband us-
ing the Hungarian algorithm [3]. It is demonstrated that the heuristic
algorithm finds near-optimal sensing assignments significantly faster
than an exact branch-and-bound search.

The literature on spectrum sensing strategies for CR has ob-
tained attention during the past few years. In [4, 5] parametric spec-
trum sensing policies are derived using the formalism of partially
observable Markov decision processes (POMDPs). In [5] a closed
form Whittle index policy for Markovian rewards was derived and
shown to be optimal under certain conditions. In [6] a single-user
RL-based sensing policy was proposed using soft max action selec-
tion. However, none of these works consider the effect of the sensing
assignment in cooperative sensing. In [7] a sensor-mission assign-
ment problem is considered with additive gains obtained by sens-
ing assignment in a cooperative scenarios. However, in cooperative
sensing the additivity assumption does not hold necessarily.

This paper is organized as follows. In section 2 the proposed
sensing policy is presented and the sensing assignment problem is
formulated. Section 2 also introduces a polynomial time algorithm
for solving the sensing assignment problem. Section 3 provides sim-
ulations for the proposed heuristic algorithm and for the sensing pol-
icy. The paper is concluded in section 4.

2. THE PROPOSED SENSING POLICY

The proposed sensing policy is a cooperative action-value policy
maintained at the fusion center (FC). The FC makes a global deci-
sion about the state of the spectrum using a fusion rule that combines
the local binary decisions that individual SUs have communicated.
In this paper the simple OR-rule is employed but any other fusion
rule could be used as well. The sensing policy uses ε-greedy method
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[2] for balancing between exploration and exploitation. The policy is
managed by the FC that tracks two kinds of action-values: the Q(b)-
values for sensing subband b and the Q(s, b)-values for assigning
SU s to sense subband b. A natural way to define the reward rt(b)
for selecting subband b to be sensed is the obtained throughput:

rt+1(b) =

{
Rt+1(b), if b is accessed and free,
0, if b is occupied,

(1)

where Rt+1(b) is the instantaneous throughput at subband b at time
t + 1. It is assumed that the SU who has been granted the permis-
sion to access the band will feed back an estimate of the achieved
throughput. For example, this may be based on the estimate of the
channel quality between the two communicating SUs.

The reward for assigning SU s to sense subband b is:

rt+1(s, b) =

{
dt+1(s, b), dt+1(FC, b) = 1

Qt(s, b), dt+1(FC, b) = 0,
(2)

where dt+1(s, b) denotes the local decision by SU s for subband b
and dt+1(FC, b) denotes the corresponding global decision at the
FC. In this paper decision 1 means that the band is considered to
be occupied and 0 that the band is considered to be idle. Hence, the
rewards rt+1(s, b)’s depend on the SUs’ local detection probabilities
assuming that the global decision at the FC is reliable.

After receiving the feedback from the SUs the Q(b)- and
Q(s, b)-values are updated according to [2]

Qt+1(b) = Qt(b) + α1[rt+1(b) − Qt(b)], (3)

Qt+1(s, b) = Qt(s, b) + α2[rt+1(s, b) − Qt(s, b)], (4)

where α1 and α2 (α1, α2 ∈]0, 1]) are the step sizes.

2.1. Exploration

In order to gain information about the qualities of all parts of the
spectrum and the local sensing performances the CR need to do ex-
ploration. In the exploration phase the spectrum is sensed according
to pseudorandom patterns with fixed diversity order D (that is the
number of SUs simultaneously sensing the same band) so that all
subbands and all combinations of D spectrum sensors are consid-
ered in minimum time [8]. This diversity guarantees reliable deci-
sions at the FC. Using pseudorandom frequency hopping provides
quick scanning over the spectrum of interest with minimal control
signaling, thus being extremely suitable for exploring the spectrum.
The frequency hopping code design allows for trading off scanning
speed and diversity (and consequently detector performance) in an
elegant manner.

2.2. Exploitation

The utilization of the obtained information about the band qualities
and local sensing performances is referred as exploitation. In the
exploitation phase the FC selects the set of bands B to be sensed and
a corresponding sensing assignment with some desired properties.
For convenience time index t has been dropped in the rest of the
paper. The exploitation phase is divided into two stages:
Stage1: Select the set of subbands B with the largest Q(b)’s.
Stage2: Find a feasible sensing assignment for B using Q(s, b)’s.
In [1] we showed that the update of Q(s, b)-value in (3) given the
reward function in (2) converges to the local detection probability of

SU s at band b provided that the probability of error (the probability
of missed detection or false alarm) at the FC is low.

One possible criterion for choosing a sensing assignment is the
total number of SUs assigned for sensing, which affects the SUs
power consumption. In order to conserve the SUs’ batteries we want
to minimize the number of assigned SUs while pursuing to guarantee
the desired level of detection performance. Denoting the set of SUs
as S the sensing assignment problem (SAP) can be formulated as

min
x(s,b)

∑
b∈B

∑
s∈S

w(s)x(s, b) (5)

s.t. PFC(Q(s, b),X) ≥ Pd,target, ∀b ∈ B∑
b∈B

x(s, b) ≤ K(s), ∀s ∈ S

x(s, b) ∈ {0, 1}.
In this paper Neyman-Pearson detectors are used, that maximize the
detection probability under a constraint on the false alarm rate and
the false alarm rate is not included in (5) as a separate constraint.
In (5) PFC(Q(s, b),X) is the estimated detection probability at the
FC at band b and Pd,target the minimum probability of detection
that the FC is allowed to have. K(s) is the number of bands SU s
can sense simultaneously and w(s) is the cost of user s that may be
used to favor certain sensing assignments. The costs may be chosen,
for example, according to the SUs’ battery charge so that if a SU has
a low battery charge it may be given relatively large costs compared
to the other SUs. The unknown NS × L binary sensing assignment
matrix is denoted as [X]s,b = x(s, b), where x(s, b) = 1 if SU s is
assigned to sense subband b and x(s, b) = 0 otherwise.

Generally, (5) is an NP-hard problem. Using a branch-and-
bound (BB) type algorithm the worst case running time is 2NSL

(corresponding to the case when pruning of the search tree is not
possible). However, in practical scenarios with many SUs, the prob-
ability that there exists multiple optimal or near-optimal assignments
is high. In such cases heuristic search algorithms are likely to find
reasonably good sensing assignments. In [9] a polynomial time al-
gorithm is proposed for finding sensing assignments that minimize
the probability of missed detection at the FC. In each round the algo-
rithm in [9] assigns SUs to sense the subbands using the Hungarian
method until all SUs have been assigned. In this paper, however, the
minimum number of SUs that are able to meet a desired detection
probability is found. To this end, the Hungarian method is employed
iteratively to assign SUs to subbands one by one until a feasible so-
lution is found.

2.2.1. An algorithm for solving the SAP

In this paper we propose a heuristic algorithm for solving the SAP
in (5). Here the simple OR-rule is used but any other fusion rule
could be applied as well. The listing of the proposed iterative Hun-
garian algorithm (IH) is shown in algorithm 1. The algorithm takes
as inputs the Q(s, b)-values, B, S, w(s) and Pd,target, and outputs
the binary sensing assignment matrix X. At time instant t = 0
the Q(s, b)-values are initialized randomly between 0 and 1. The
basic idea of the algorithm is to in each round to assign one SU
to each subband in B using the Hungarian method [3]. The Hun-
garian method is a strongly polynomial time algorithm for finding
maximum (or minimum) weight matching (e.g. assigning workers
with certain qualifications for different jobs so that the total quality
of work is maximized with the constraint that each job is assigned to
exactly one worker). Here the SUs assigned for each subband are the
ones that increase the sum of weighted probabilities of detection the
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Algorithm 1 Iterative Hungarian method for solving the SAP in (5)
when the OR-rule is used at the FC.
• Step 1: initialize: X = 0NS×L.
• Step 2: initialize: Q′(s, b) = Q(s, b), b ∈ B.

while a feasible solution has not been found do
// Solve the maximum weight matching using the Hungarian method.

[X′]s,b = arg max
x′(s,b)

∑

s

∑

b

w(s)Q′(s, b)x′(s, b)

s.t.
∑

s

x′(s, b) = 1, ∀b ∈ B

x′(s, b) ∈ {0, 1}.
// Update the sensing assignment.
X = X + X′.
// Calculate the obtained detection probabilities for the bands.
PFC(b) = 1 −∏s(1 − Q(s, b))x(s,b).
// Re-weight the Q′(s, b)-values
Q′(s, b) = Q(s, b)(1 − PFC(b)).
// Set Q(s, b)-values that cannot be assigned anymore to −∞.
if PFC(b) ≥ Pd,target then

Q′(s, b) = −∞, ∀s .
end if
if
∑

b x(s, b) = K(s) then
Q′(s, b) = −∞, ∀b .

end if
// Check if all Q′(s, b) are -∞.
if Q′(s, b) = −∞, ∀s, b then

if PFC(b) ≥ Pd,target, ∀b then
X is feasible. Return X.

else
Remove band b̃ from B and go to step 1.

end if
end if

end while

most. At those bands where the current sensing assignment achieves
the desired sensing performance Pd,target the Q(s, b)-values are set
to −∞. This guarantees that none of the remaining SUs will be as-
signed to those subbands. At those bands where the current sensing
assignment does not yet meet the detection performance constraint
the Q(s, b)-values are re-weighted according to how good the sens-
ing performance would be with the current iterated sensing assign-
ment. Similarly, for SUs that have already been assigned to sense
K(s) subbands the Q(s, b)-values are set to −∞. As soon as a
feasible sensing assignment is found the algorithm is stopped and
X is returned. If no feasible sensing assignment is found the al-
gorithm removes one subband b̃ from B and tries to find a feasible
sensing assignment for the new set of bands B\b̃. There are many
ways for selecting the subband to be removed. In this paper we re-
move the band that essentially has the smallest product of Q-values
b̃ = arg minb∈B Q(b)[1 − ∏S(1 − Q(s, b))], which reflects the
product of the mean throughput of the band and the detection prob-
ability of the band if all SUs would be sensing it.

3. SIMULATIONS

3.1. Performance of the heuristic algorithm

We compare the performance of the proposed heuristic iterative (IH)
search algorithm to the performance of an exact branch-and-bound
algorithm using the OR-rule. For the BB algorithm the SAP is writ-
ten as a linear binary integer program (BIP) [1]. Random Q(s, b) ∼
U[0, 1] values are generated for Ns = 4 SUs and L = 1, 2, 3 sub-

L = 1 L = 2 L = 3
Tr 0.071 0.058 0.038

Min 1 1.002 1.0003
NB,s 1 0.982 0.988

#(NB,s = L) 1 0.965 0.965

Table 1. Performance ratio of the IH- and BB-algorithms when
Q(s, b) ∼ U[0, 1]. The assignments found by the IH-algorithm
are very close to the exact minimized assignment with a signifi-
cant reduction in the computation time. Tr denotes the runtime of
the algorithm when a feasible solution has been found for sensing
L subbands and Min the corresponding number of active sensors.
Variable NB,s denotes the number of bands sensed on average and
#(NB,s = L) the number of cases where a feasible assignment was
found for exactly L bands.

L = 1 L = 2 L = 3 L = 4 L = 5
Te 0.13 0.03 0.004 0.0009 0.0006

Min 1 1.01 1.01 1.02 1
NB,s 1 1 0.99 0.96 0.93

#(NB,s = L) 1 1 0.96 0.84 0.63

Table 2. Performance ratio of the IH- and BB-algorithms when
Q(s, b) ∼ U[0, 0.9]. The assignments found by the IH-algorithm
are close to the exact minimized assignment with a significant re-
duction in the computation time.

bands with Pd,target = 0.9, K(s) = 1 and w(s) = 1. Only the
cases where there exists at least one feasible assignment for L bands
are considered (consequently, the BB-algorithm always finds an op-
timal sensing assignment). The algorithms were run using Matlab-
software on a 3.00 GHz processor. Table 1 shows the ratios of each
corresponding measure given in the left most column for the IH- and
the BB-search. Variable Tr denotes the time to find a feasible solu-
tion for sensing L subbands and Min the corresponding number of
active sensors. Variable NB,s denotes the number of bands sensed
on average and #(NB,s = L) the number of cases where a feasible
assignment was found for exactly L bands (i.e. the number of times
IH did not have to remove any band from B). For all results, except
for the mean run time Tr , the performance of the proposed heuristic
algorithm is the better the closer the value is to 1. Respectively, the
closer Tr is to 0, the faster the heuristic algorithm is compared to
the exact BB search. The results were averaged over 1000 random
sets of Q(s, b)’s for which there existed at least one feasible solu-
tion for sensing L bands. From the sensing policy point of view the
most important measures are the first three rows, i.e. the run time,
the number of active sensors and the number of bands sensed. It
can be seen that the heuristic algorithm is able to find sensing as-
signments that are close to the optimal solution significantly faster.
In table 2 we show the corresponding results for a harder problem
when Q(s, b) ∼ [0, 0.9], NS = 10 and L = 1, ..., 5 while keeping
the other parameters the same as before. For this case the results for
Min, NB,s and #(NB,s = L) are slightly worse, but still reason-
ably good compared to the gain in the mean run time Tr .

3.2. Performance of the sensing policy

We consider the throughput of the CR network and the mean num-
ber of active sensors when NS = 6, NB = 10, L = 2, K(s) = 1,
w(s) = 1, Pd,target = 0.9 and D = 2. We consider the sens-
ing policy with both the IH- and BB-algorithms. The parameters
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Fig. 1. Obtained throughput relative to an ideal policy for the pro-
posed heuristic minimization (IH) and the exact minimization (BB).
It can be seen that the performance of the policy with the heuristic
method is roughly the same as with the exact method.

for the action-value updates are ε = 0.1 and α1 = α2 = 0.1,
where α1 is the step size for the Q(b)-values and α2 the step size
for the Q(s, b)-values. The mean SNRs of different SUs at differ-
ent bands are normally distributed with mean 0 dB and standard de-
viation 9 dB. The local detectors are Neyman-Pearson energy de-
tectors using 50 samples and the false alarm rate at the FC is set
to 0.01. The PU activities at the bands are assumed to be inde-
pendent two-state Markov processes with an ”idle” and ”occupied”
state. The mean stationary throughputs of the bands are μ(b) =
[6.4, 0.6, 2.3, 3.7, 0.7, 0.8, 0.9, 2.0, 8.7, 0.4]. To illustrate the sens-
ing policy in a non-stationary environment at time instant t = 2500
the throughputs are randomly permuted among the subbands and the
mean SNRs are randomly permuted among the SUs at a given band.
Both algorithm satisfy the detection probability constraint in steady
state. Figure 1 shows the average throughput of the CR network
compared to an ideal, genie aided, policy. An ideal policy always
knows the states and throughputs of the bands and is therefore able
to select the best available bands for sensing. It can be seen that the
policy is able to provide high throughput and to quickly re-adapt to
the changes in the environment. Furthermore, the obtained through-
put is approximately the same for the exact search and the heuristic
search, while the runtime of the heuristic algorithm was on average
only 5 % of the runtime of the BB-algorithm. Note that here it is
assumed that the throughput is not affected by the computation time
of the optimal or near-optimal action, as it would be in practice and
thus favoring the IH-algorithm even more.

Figure 2 shows the average number of active sensors assigned by
the policy using the IH- and BB-algorithm. With both algorithms the
policy assigns on average roughly 2.5 SUs for sensing. The results
indicate that the IH algorithm is able to find minimal assignments
most of the time.

4. CONCLUSIONS

In this paper a centrally-controlled RL-based cooperative sensing
policy has been proposed for CR. The policy learns to focus the
search for idle frequency bands to those parts of the spectrum that
persistently provide high data rate. Furthermore, the policy learns
about the individual sensing performances of different SUs and uses
this information to minimize the sensing resources. For the mini-
mization problem a heuristic polynomial time algorithm that itera-
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Fig. 2. The average number of assigned sensors by the policy using
the proposed heuristic algorithm (IH) and the exact search (BB). It
can be seen that the number of active sensors is not affected by using
the proposed heuristic method.

tively employs the Hungarian method has been proposed. The simu-
lation results have shown that the proposed algorithm is able to find
near-optimal solutions in practical scenarios significantly faster than
an exact branch-and-bound type search. In dynamic environment it
is important to save time from the policy computation to the actual
exploitation of the spectral opportunities.
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