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ABSTRACT

Recent developments in medical treatment put challenging demands
on ultrasound imaging systems. These demands typically imply in-
creasing the number of transducer elements involved in each imag-
ing cycle. Confined to traditional sampling methods, the inevitable
result is a significant growth in the amount of raw data that needs
to be transmitted from the system front end, and then processed by
the processing unit, effecting machinery size and power consump-
tion. In this paper, we derive a scheme which reduces the amount of
transmitted data, by applying Compressed Sensing (CS) techniques
to analog ultrasound signals detected in the transducer elements. We
follow the spirit of Xampling, which combines classic methods from
sampling theory with recent developments in CS, aimed at sampling
analog signals far below the Nyquist rate. Our scheme enhances
SNR, by integrating low-rate samples extracted from multiple trans-
ducer elements. We refer to this process as “beamforming in the
compressed domain”, or “compressed beamforming”.

Index Terms— Array Processing, Beamforming, Compressed
Sensing (CS), Dynamic Focus, Finite Rate of Innovation (FRI), Ma-
trix Pencil, Ultrasound, Xampling

1. INTRODUCTION

In ultrasound-based diagnostic imaging, ultrasonic pulses are trans-
mitted into the scanned tissue. Reflections of the transmitted energy,
caused by density and propagation-velocity perturbations in the tis-
sue [1], are then measured by an array of transducer elements. Ap-
plying the acoustic reciprocity theorem, data from multiple elements
is digitally integrated in the processing unit, in a process known as
beamforming [2], which results in significant SNR enhancement.
Digital beamforming requires sampling the signals detected in all
active elements, and then transmitting the samples to the processing
unit. Confined to the classic Nyquist-Shannon theorem [3], tradi-
tional methods require that this data be sampled at twice the base-
band bandwidth of the detected signals. Avoiding artifacts, caused
by the digital implementation, requires that the data be sampled at
even higher rates, typically 3-5 times the center frequency of the
transmitted pulse [2]. Sampling at such rates is not necessarily a
bottleneck in modern systems. On the other hand, as imaging tech-
niques evolve, the number of elements involved in each imaging cy-
cle grows significantly. Consequently, large amounts of data must
be transmitted to the processing unit, posing an engineering chal-
lenge. This motivates compression of the sampled data, before its
transmission to the processing unit.

In their recent work, Tur et. al. [4] propose that the ultrasound
signal detected by each receiver be regarded as Finite Rate of Inno-
vation (FRI) [5, 6]. More explicitly, they model it as L replicas of
a known-shape pulse, caused by scattering of the transmitted pulse
from point reflectors, located along the narrow transmission beam.

Applying the FRI framework, [4, 7] propose two robust schemes,
which enable reconstruction of the signal, characterized by 2L de-
grees of freedom, from samples taken at a rate far below Nyquist.
Combining classic sampling methods with recent CS developments,
these schemes follow the spirit of Xampling [8]. Nevertheless, ap-
plying such schemes to signals originating in biological tissues, of-
ten results in erroneous parameter estimation, due to the noisy nature
of numerous reflections from microscopic scatterers.

The goal of our work is to design a Xampling scheme, which
achieves substantial SNR enhancement of the data, by integrating
low-rate samples from multiple elements. We refer to this process as
“Beamforming in the Compressed Domain”, since it exploits ideas
from traditional beamforming. We propose two compressed beam-
forming schemes. Applying these schemes to real ultrasound data,
we successfully image macroscopic perturbations, embedded in the
scanned plane, while achieving a ten-fold reduction in sampling rate,
compared to standard imaging techniques. The first scheme extracts
the necessary low rate samples using multiple modulation and inte-
gration channels, applied to the analog signal detected in each re-
ceiver. The second scheme approximates these samples, based on
frequency samples of the detected signals. It thus achieves similar
performance to the first scheme, in terms of sampling rate and image
quality, while utilizing a much simpler sampling mechanism.

This paper is organized as follows: in Section 2, we review the
principles of beamforming in ultrasound imaging. In Section 3 we
discuss the FRI signal model and examine beamforming in this con-
text. We then introduce a first multiple-element Xampling scheme
which integrates beamforming from low rate samples. This scheme
involves complicated hardware, and we therefore introduce, in Sec-
tion 4, a second Xampling scheme, which achieves similar perfor-
mance to the first, while utilizing a simple compressed beamforming
mechanism. In Section 5 we introduce experimental results.

2. BEAMFORMING WITH MULTIPLE RECEIVERS

We begin by describing the beamforming process, carried out in B-
mode ultrasound imaging. The analysis, based mainly on [1], fo-
cuses on a linear transducer array, and may be extended to other
antennae array applications.

Consider a set of M receivers, located along the x axis, as il-
lustrated in Figure 1. Denote by δm the distance between the mth
receiver and the origin, x = 0. Assume a pulse of energy, transmit-
ted along the z axis. The pulse propagates at velocity c, such that at
time t the energy is concentrated at (x, z) = (0, ct). A point reflec-
tor located at this position scatters a portion of the energy, such that
a pulse will be detected by every sensor, at a time instance which
depends on its location. Denote by τm (t), the time of detection by
the mth sensor, and by γm, the ratio δm/c. It may be shown that:

τm (t) = t+
√

γ2
m + t2. (1)
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A common SNR enhancement technique involves averaging sig-
nals detected by multiple receivers. Applying this technique here,
we must first compensate for the variation in detection-time of re-
flections corresponding to the same scattering element. We thus set
the receiver satisfying δm = 0 as reference, denoting its index by
m0. Using (1), the detection time in this receiver takes the simple
form τm0 (t) = 2t, with the corresponding detection time in the
mth receiver being τm (t). In order to align these instances, we now
construct the signal ϕ̂m (t) such that ϕ̂m (2t) = ϕm (τm (t)). Sub-
stituting 2t → t, we obtain:

ϕ̂m (t) = ϕm

(
t/2 +

√
γm2 + (t/2)2

)
. (2)

Having aligned corresponding reflections through this distortion, we
may average the distorted signals, resulting in the beamformed sig-
nal, Φ(t):

Φ(t) =
1

M

M∑
m=1

ϕ̂m (t). (3)

The signal Φ (t), exhibiting enhanced SNR compared to the in-
dividual signals from which it is composed, is translated to a single
image line, after envelope detection. The process formulated in (2)-
(3), practically implies that, at each time instance, the array is fo-
cused to the position, along the z axis, from which a pulse, arriving
at that instance, would have originated. Notice, that our derivation
assumed continuous time. In practice, modern systems implement
beamforming digitally, by applying discrete delays to samples taken
from the detected signals {ϕm (t)}Mm=1. Confined to traditional
sampling methods, these samples must be taken at a rate which is
at least twice the baseband bandwidth of the detected signals. Re-
ducing this sampling rate is the primary goal of our work.

Fig. 1. Setup - M transducer elements positioned along the x axis.
The array transmits a pulse, which encounters point reflectors as it
propagates along the z axis.

3. BEAMFORMING SUBJECT TO THE FRI SIGNAL
MODEL

Tur et. al. propose [4] that the ultrasound signal detected in an indi-
vidual receiver may be considered FRI. This is based on the assump-
tion that, as the transmitted pulse propagates, it encounters a finite set
of L isolated point reflectors, aligned along the z axis. In the more
general sense, these reflectors may be regarded as point-like, con-
sidering their intersection with the narrow transmission beam. As-
suming, additionally, that we know the shape of the reflected pulse

(referred to by the term “two-way” pulse), denoted by h(t), the sig-
nal detected in each receiver may be approximated as:

ϕm(t) =
L∑

l=1

al,mh (t− tl,m), (4)

where tl,m denotes the time in which a reflection, originating from
the lth reflector, arrives at the mth receiver, and al,m denotes the
attenuation of this reflection. The model (4) implies, that the sig-
nal detected in each receiver satisfies the FRI property [5], and may
therefore be reconstructed from a minimal number of 2L samples.

Nevertheless, applying a Xampling scheme such as the one pro-
posed in [4] to signals originating from biological tissues, will of-
ten result in erroneous parameter estimation, mainly due to multiple
reflections from microscopic scatterers, manifested as noise. In ex-
treme scenarios, where the noise masks the FRI component, the ex-
tracted parameters will be meaningless, and any attempt to cope with
errors in the parametric space will turn out useless. However, recall
that we may significantly attenuate the noise, by applying the beam-
forming process described in Section 2 to the individual signals.
Subject to the signal model proposed here-above, if the resulting
beamformed signal, Φ (t), additionally maintains the FRI property,
then there is obvious advantage in applying the Xampling scheme
to this signal, rather than to the individual signals from which it is
generated.

Assuming that all reflections originate from points along the z
axis, we can show that, to good approximation, Φ (t) may be ap-
proximated as:

Φ(t) ≈
L∑

l=1

(
1

M

M∑
m=1

al,m

)
h (t− tl) =

L∑
l=1

blh (t− tl), (5)

with tl being the delay measured by the reference receiver, m0, for a
reflection originating from the lth reflector, that is: tl := tl,m0 . We
emphasize the invariance to m in the last formulation, rising from the
fact that the distortion applied by (2) aligns reflections originating
from the same point along the path of the transmitted pulse. Since it
additionally distorts the shape of the reflected pulse, (5) holds only
approximately.

Having approximated Φ (t) as FRI, comprising L replicas of a
known-shape pulse, we can now apply FRI sampling to (5). How-
ever, recall that Φ (t) does not exist in the analog domain. Thus, our
problem is how to obtain samples of (5), where in practice all we
have access to are the individual signals {ϕm (t)}Mm=1.

Beginning our derivation, let us conceptually feed Φ (t) into the
FRI Xampling scheme proposed in [7]. This scheme may be di-
vided into two separate blocks: the first, operating in the analog do-
main, extracts a subset of the signal’s Fourier coefficients. The sub-
set comprises K consecutive coefficients, where K ≥ 2L. Denote
the sequence of these coefficients’ indexes by κ = {k1, k2, ..., kK};
the second block, operating in the digital domain, estimates the un-
known signal parameters from the Fourier coefficients extracted by
the first block, by applying spectral estimation techniques such as
annihilating filter [9]. In the following sections, we confine our dis-
cussion to the first block, where our goal is to extract the sequence κ
of Φ (t)’s Fourier coefficients.

Consistent with [7], our first Xampling block consists of K
branches, each comprising a modulating kernel and an integrator.
We set the integration interval to be [0, T ), choosing T according
to the transmitted pulse’s penetration depth, such that the interval
contains the support of Φ (t). We farther require, that the integration
interval contains the support of ϕm (t), for every 1 ≤ m ≤ M .
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It may be shown, that the support of ϕm (t) is bounded from be-
low by γm ≥ 0. Denoting the upper bound of this support by Tm

(once again dictated by the penetration depth), we select T such
that it additionally satisfies T ≥ max1≤m≤M Tm. Without loss
of generality, we choose the modulating kernel in the jth branch to

be e−j 2π
T

kjt, kj being the jth element in κ. With this choice, the
output of this branch is simply Φ (t)’s kj th Fourier coefficient:

cj =

∫ T

0

e−i 2π
T

kjtΦ(t)dt. (6)

Substituting Φ(t), expressed in (2)-(3), into (6), we now get:

cj =
1

M

∫ T

0

e−i 2π
T

kjt
M∑

m=1

ϕ̂m (t)dt

=
1

M

M∑
m=1

∫ T

0

e−i 2π
T

kjtϕm

(
t/2 +

√
γm2 + (t/2)2

)
dt

=
1

M

M∑
m=1

cj,m,

(7)

where

cj,m =

∫ T

0

gj,m(t)ϕm (t) dt, (8)

and

gj,m(t) = qj,m(t)e−i 2π
T

kjt,

qj,m(t) = I[γm,Tm) (t)
(
1 + γm

2/t2
)
ei

2π
T

kj
γm

2

t .
(9)

Here, I[a,b) (t) denotes an indicator function, namely:

I[a,b) (t) =

{
1 a ≤ t < b
0 otherwise

. (10)

The process defined in (7)-(10) describes a desired com-
bination of the beamforming with the first stage of the Xam-
pling, and is depicted in Figure 2. Each received signal, ϕm (t),

is multiplied by a bank of kernels, {gj,m (t)}Kj=1, defined by

(9), and integrated over the interval [0, T ), resulting in a vector

cm =
[
c1,m c2,m ... cK,m

]T
. The vectors {cm}Mm=1 are

then averaged in c =
[
c1 c2 ... cK

]T
, which has the de-

sired improved SNR property and provides the basis for extracting
the 2L parameters of Φ (t), the second stage of the Xampling. As-
suming that the estimated number of pulses, L, satisfies L � fsT ,
where fs is the Nyquist frequency, dictated by the bandwidth of the
detected signals, then we may obtain beamforming using samples
taken at a rate which is far below the Nyquist rate.

4. SIMPLIFYING THE XAMPLING MECHANISM

Implementing the scheme derived in Section 3 requires complicated
hardware, due to the complexity of the kernels. We now modify this
scheme, such that it utilizes a much simpler sampling mechanism.

With its support contained in [0, T ), the FRI component, ϕm (t),
may be expressed it in terms of its possibly infinite set of Fourier
coefficients, {φm [n]}∞n=−∞, calculated with respect to this interval.
Let us approximate ϕm (t) using just a finite subset of consecutive

Fig. 2. Xampling scheme utilizing distorted exponential kernels.

coefficients. Substituting this approximation into (8), with gj,m (t)
defined in (9), yields:

ĉj,m =

N2∑
n=N1

φm[kj − n]Qj,m [n], (11)

where Qj,m [n] are the Fourier series for qj,m (t), which is also de-
fined on the interval [0, T ). It can be shown that, for any given ε > 0,
for any pair (j,m), there exist N1 (ε, kj ,m) and N2 (ε, kj ,m) such
that |ĉj,m − cj,m| < ε, and so with the finite sum (11), we may
approximate cj,m to any accuracy. Furthermore, setting an upper
bound on the energy of ϕm (t), N1 and N2 may be chosen subject
to the decay properties of the sequence {Qj,m [n]}∞n=−∞, and can
be done off-line.

We may now design a modified sampling scheme, for estimat-
ing the chosen set of Φ (t)’s Fourier coefficients, {cj}Kj=1. Set-
ting the desired accuracy of approximation, ε, we first calculate the
pair N1 (ε, kj ,m) and N2 (ε, kj ,m) for every 1 ≤ j ≤ K and
1 ≤ m ≤ M . Given such pair, denote by κkj ,m the sequence of
indexes corresponding to ϕm (t)’s Fourier coefficients, participating

in (11). Namely, κkj ,m = {kj − n}N2(ε,kj ,m)

n=N1(ε,kj ,m). Additionally,

denote by κm, the union ∪K
j=1κkj ,m, with Km being the number

of elements in this union. The modified sampler will extract the se-
quence {φm [k]}k∈κm

from the signal detected in the mth receiver.
A linear transformation will now be applied to this sequence, result-
ing in the ε-approximation of the coefficients {cj,m}Kj=1. Writing
this transformation in matrix form, we have:

ĉm = AmΦm, (12)

where ĉm is the length K vector containing ĉj,m as its jth element,
Φm is the length Km vector containing the kth coefficient of the
sequence {φm [k]}k∈κm

as its kth element, and Am is a K × Km

matrix, constructed as follows:

Am[j, k] =

{
Qj,m

(
2π
T

(kj − κm {k})) κm {k} ∈ κkj ,m

0 otherwise
.

(13)
Here κm {k} denotes the kth element in the sequence κm. The
resulting Xampling scheme is illustrated in Figure 3. In our first
scheme, depicted in Figure 2, the samples taken in each receiver
required that the corresponding signal be fed into K branches, in
which it was modulated using a complicated set of kernels. In the
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current scheme, however, a much simpler sampling mechanism may
be used, namely: a linear transformation, Vm, is applied to point-
wise samples of the signal, taken at sub-Nyquist rate, after filtering
it with an appropriate kernel, s∗m (−t), such as the Sum of Sincs [4].

Concluding this section, let us consider a setup, in which the
sampled signal is band-limited, and may be sampled at Nyquist rate
in each receiver. This is, in fact, often the case in ultrasound systems.
In such case, implementing the linear transformation (12) at the level
of each receiver, the approximation error vanishes, while reducing
the transmission rate to that achieved by our first scheme.

Fig. 3. Xampling scheme utilizing Fourier samples of detected sig-
nals.

5. SIMULATION ON ULTRASOUND DATA

We examine the result of applying our proposed schemes to raw
RF ultrasound data. The data was acquired using a programmable
imaging system (Model V-1-128, Verasonics, Inc., Redmond, WA),
equipped with a 128-element 1-D linear transducer array (Model L7-
4, Philips Healthcare, Bothell, WA). The imaging target was a com-
mercial multi-purpose gray-scale phantom (Model 403GS LE, Gam-
mex, Inc., Middleton, WI) including 0.1-mm nylon wires embedded
in tissue mimicking material. Each image line is constructed from
M = 16 active elements, distanced δ = 0.3mm apart. Imaging to
a depth of z = 7.88cm, we obtain T = 102μsec. The results are
illustrated in Figure 4.

In the first experiment, we generate an image using standard
techniques, applying beamforming to data sampled at the Nyquist
rate. Sampling at 20MHz, a single image line requires that 2048
samples be taken in each element. We use the resulting image (a) as
reference, and aim at reproducing it using our Xampling schemes.
We begin by applying our first Xampling scheme. Assuming L = 30
reflectors, and using a factor 3 oversampling, κ comprises K = 181
indexes, so that we obtain over ten-fold reduction in sample rate.
The resulting image (b) well depicts strong perturbations observed
in (a). Notice that point reflectors, located at the proximity of the
array (z ≈ 1cm) remain well in focus, due to the integrated beam-
forming. We next apply our second Xampling scheme. For every
kj ∈ κ and for every 1 ≤ m ≤ M , we choose N1 and N2 of (11)

such that
∑N2

n=N1

∣∣Qj,m

(
2π
T
n
)∣∣2 ≈ 0.9

∑∞
n=−∞

∣∣Qj,m

(
2π
T
n
)∣∣2.

In our setup, this results in an average number of 190 samples per
receiving element, required for constructing a single image line. We
are still left with a ten-fold reduction in sample rate, where the re-
sulting image (c) appears very similar to (b).
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Fig. 4. Comparison of two Xampled images and an image obtained
using traditional methods.
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