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ABSTRACT

We introduce a sparse covariance estimation method for the

high dimensional setting when the covariance matrix decom-

poses as a Kronecker product, i.e., Σ0 = A0 ⊗ B0, and

the observations are Gaussian. We propose an �1 penalized

maximum-likelihood approach to solve this problem. The

dual formulation motivates an iterative algorithm (penalized

flip-flop; FFP) based on a block coordinate-descent approach.

Although the �1-penalized log-likelihood function (objective

function) is non-convex in general and non-smooth, we show

that FFP converges to a local maximum under relatively mild

assumptions. For the fixed dimension case, large-sample

statistical consistency is proved and a rate of convergence

bound is derived. Simulations show that FFP outperforms its

non-penalized counterpart and the naive Glasso algorithm for

sparse Kronecker-decomposable covariance matrix.

Index Terms— high dimensional inference, penalized

maximum likelihood, direct product, Glasso, dual optimiza-

tion

1. INTRODUCTION

Covariance estimation is a problem of interest in many differ-

ent disciplines, including machine learning, signal process-

ing, economics and bioinformatics. Consider a separable co-

variance matrix model for the observable data:

Σ0 = A0 ⊗B0 (1)

where A0 is a p×p positive definite matrix and B0 is an q×q
positive definite matrix. Note that this implies that Σ0 is pos-

itive definite. Let Θ0 := Σ−1
0 denote the inverse covariance,

or precision matrix. As the number of parameters is reduced

from Θ(p2q2) to Θ(p2)+Θ(q2), the factorization (1) offers a

significant reduction in data requirements and in complexity.

This model arises in bioinformatics applications. When

trying to estimate correlations between p genes and each gene

has f factors, we can regard A0 as the covariance matrix be-

tween genes and B0 as the covariance matrix between factors.

Model (1) also comes up in channel modeling for wireless
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communications [1]. In statistics, random processes that sat-

isfy (1) are called separable [2]. Such a covariance model

arises when the observations can be written as an i.i.d process

y[t] = a[t]⊗ b[t], t = 1, . . . , n

where a[t] and b[t] are two zero-mean, mutually-uncorrelated

random processes with covariance matrices A0 ∈ R
p×p and

B0 ∈ R
q×q.

Estimation of the Kronecker components (A0,B0) often

yields superior performance to estimating Σ0 ∈ R
pq×pq it-

self [3]. The maximum-likelihood (ML) estimator of the Kro-

necker components has been studied in [4]. While the ML es-

timator has no known closed-form solution, the solution can

be iteratively computed via the flip-flop (FF) algorithm [4, 3].

ML estimation for the situation where the Kronecker com-

ponent matrices are themselves sparse has not been studied.

In addition to exploiting the Kronecker factorization, we ex-

ploit sparsity by proposing an �1-penalized likelihood esti-

mator for the Kronecker product matrix. This formulation

naturally leads to an iterative algorithm, called the penalized

flip-flop (FFP) algorithm, that optimizes the �1-penalized log-

likelihood function in a block-coordinate manner. The first

contribution of this paper is to show that the FFP algorithm

converges to a local maximum of the penalized likelihood

function. We believe that due to the alternating nature of the

algorithm and the lack of joint convexity with respect to the

block parameters, this is the most that can be proved. The sec-

ond contribution of this paper is to establish statistical conver-

gence rates of the FFP algorithm, i.e., the rate of convergence

of estimator mean squared-error.

2. NOTATION

For a square matrix M, let |M|1 := ‖vec(M)‖1 and |M|∞ =
‖vec(M)‖∞, where vec(M) denotes the vectorized form of

M (columns stacked on top of each other). Define Mi,j as

the (i, j)th element of M. Define the pq × pq permutation

operator Pp,q such that Pp,qvec(N) = vec(NT ) for any p×q
matrices N. Define the set Sp

++ of symmetric positive definite

(p.d.) p × p matrices. It can be shown that Sp
++ is a convex

set, but it is not closed [5]. Let I(A) ∈ {0, 1} be the indicator

of the truth of statement A.
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3. GRAPHICAL LASSO FRAMEWORK

Available are n i.i.d. multivariate Gaussian observations

{x[t]}nt=1, where x[t] ∈ R
pq, having mean 0 and covariance

Σ = A0 ⊗B0. Then, the log-likelihood is proportional to:

l(Σ) := log det(Σ−1)− tr(Σ−1Ŝn), (2)

where Σ is the positive definite covariance matrix and Ŝn =
1
n

∑n
t=1 x[t]x[t]T is the sample covariance matrix. Recent

work [6, 7] has considered �1-penalized maximum likelihood

estimators over the unrestricted class of positive definite ma-

trices. These estimators are known as graphical lasso and the

�1 penalty induces sparsity on the solution Σ̂n by solving:

Σ̂n ∈ arg max
Σ∈Sp

++

{l(Σ)− λ|Σ−1|1}, (3)

where λ ≥ 0 is a regularization parameter. If λ > 0 and Ŝn

is positive definite, then Σ̂n in (3) is the unique minimizer.

For covariance matrices Σ of the form A ⊗ B (where

A ∈ Sp
++ and B ∈ Sq

++), we have Σ−1 = A−1 ⊗ B−1

and |Σ−1|1 = |A−1|1|B−1|1 [8]. Then, the optimization

problem (3) becomes minX∈Sp
++,Y∈Sq

++
J(X,Y), where

J(X,Y) := tr((X⊗Y)Ŝn)− f log det(X)
− p log det(Y) + λ|X|1|Y|1, (4)

and we defined X = A−1 and Y = B−1.

Lemma 1. Assume λ ≥ 0, X ∈ Sp
++ and Y ∈ Sq

++. When
one argument of J(X,Y) is fixed, the objective function (4)
is convex in the other argument 1.

Proof. For a proof, see [9].

4. DUAL FORMULATION

Motivated by Lemma 1, we fix one matrix in (4) and consider

the dual problem that arises as we optimize (4) over the other

matrix.

Lemma 2. Assume Ŝn is positive definite.

1. Consider J(X,Y) in (4) with matrix X ∈ Sp
++ fixed.

The dual problem for minimizing J(X,Y) over Y is:

max
{W:|W− 1

p

∑ p
i,j=1 Xi,j Ŝn(j,i)|∞≤λ|X|1

p }
log det(W).

(5)

Consider (4) with matrix Y ∈ Sq
++ fixed. The dual

problem for minimizing J(X,Y) over X is:

max
{Z:|Z− 1

q

∑ q
k,l=1 Yk,lŜn(l,k)|∞≤λ|Y|1

q }
log det(Z), (6)

where Ŝn := PT
p,qŜnPp,q.

1Function (4) is not jointly convex in (X,Y), for general matrices X and

Y.

2. Strong duality holds for (5) and (6).

Proof. The proof is based on the saddle-point formulation of

Lagrangian duality and is included in [9].

Note that both dual problems (5) and (6) have a unique so-

lution and the maximum is attained in each one. This follows

from the fact that we are maximizing a strictly concave func-

tion over a closed convex set. Lemma 2 leads to a similar re-

sult as obtained in [6], but with
(

1
p

∑p
i,j=1 Xi,jŜn(j, i), λ|X|1

p

)
playing the role of (Ŝn, λ), for the “fixed X” subproblem (5).

5. ALGORITHM

In this section, we propose an alternating minimization al-

gorithm based on the results obtained in Lemma 2. Since

strong-duality holds for subproblems (5) and (6), we can find

a δ-suboptimal solution for each subproblem by using the size

of the duality gap as a stopping criterion. If λ = 0, FFP re-

duces to the flip-flop (FF) [3] algorithm since each Glasso

step becomes superfluous.

Algorithm 1 Penalized Flip-Flop (FFP) Algorithm

1: Input: Ŝn, p, f , n, ε > 0
2: Output: Θ̂0

3: Initialize X to be positive definite.

4: Θ̂0 ← Ipf

5: repeat
6: Θ̂0,prev ← Θ̂0

7: TX ← 1
p

∑p
i,j=1 Xi,jŜn(j, i)

8: λX ← λ|X|1
p

9: Y ← arg minY∈Sq
++
{tr(YTX)− log det(Y) + λX |Y|1}

10: TY ← 1
q

∑q
k,l=1 Yk,lŜn(l, k)

11: λY ← λ|Y|1
q

12: X← arg minX∈Sp
++
{tr(XTY )− log det(X) + λY |X|1}

13: Θ̂0 ← X⊗Y
14: until ‖Θ̂0,prev − Θ̂0‖ ≤ ε

Steps 9 and 12 in Algorithm 1 can be solved using the

Glasso algorithm of Friedman et al. [7]. Consider the “fixed

X” subproblem for concreteness. The dual program (5) is

solved using Glasso resulting in a q × q matrix solution W∗

from which Y∗ = (W∗)−1 can be easily obtained. This in-

verse exists if Ŝn is p.d. 2. The (scaled) duality gap at the rth

inner iteration of Glasso is given by [9]:

δ(r)
gap(X) = tr(TXY(r)) + λ|Y(r)|1 − q

which is always non-negative by weak duality [5]. Once

δ
(r)
gap(X) ≤ δ, we have a δ-suboptimal solution to the sub-

2All FFP iterates are p.d. if Ŝn and the initializing matrix are p.d. [9]
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problem and the iterative sub-algorithm stops. An analogous

statement holds for the “fixed Y” subproblem by symmetry.

5.1. Computational Complexity

The standard Glasso algorithm for estimating a pq×pq sparse

covariance matrix has a computational complexity of order

p3q3 for each graphical lasso procedure. On the other hand,

FFP has computational complexity of order p3 + q3, which

can be a significant reduction as p and q get large.

5.2. Convergence Analysis

We have established that the penalized flip-flop (FFP) algo-

rithm converges to a local minimum under a mild assumption

on the starting point. Let J(X,Y) be as defined in (4).

Theorem 1. Assume Ŝn is positive definite. Then, we have:

1. The sequence
{
J(X(k),Y(k))

}
k

is monotonically de-
creasing.

2. The algorithm converges to a local maximum or mini-
mum and there are no saddle points.

3. As long as (X(0),Y(0)) is not a local maximum, then
the algorithm converges to a local minimum.

Proof. The proof and generalizations are contained in [9].

6. STATISTICAL CONSISTENCY

We have also established statistical consistency and rate of

convergence of the FFP algorithm for fixed dimensions p and

q; specifically, Σ̂n
p.→ Σ0 as n → ∞, where Σ̂n denotes

the penalized flip-flop (FFP) algorithm solution and Σ0 =
A0 ⊗ B0 denotes the true covariance matrix composed of

Kronecker factors A0 and B0. Let A(0) denote the initial

guess of A0 = X−1
0 . The next theorem establishes statistical

consistency for the fixed dimension-large sample case with a

result on rate-of-convergence.

Theorem 2. Assume that A0 ∈ Sp
++ and B0 ∈ Sq

++. Let
A(0) ∈ Sp

++ be an initial estimate of A0. Let Σ̂n be the
estimate of Σ0 = A0 ⊗B0 generated by the FFP algorithm
and assume that Σ̂n converges to the global minimum of (4).
Let λ in (4) be a decreasing function of n: λn = Cλ

nγ for some
γ ≥ 1/2 and C > 0. Then, we have 3:

‖Σ̂n −Σ0‖F = Op

(‖Ξ‖2tr(Σ0) + I(γ = 1
2 )CλKφ√

n

)

3Consider a sequence of real random variables Xn defined on the same

probability space and a sequence of reals bn. The notation Xn = Op(1)
is defined as: supn∈N P (|Xn| > K) → 0 as K → ∞. The notation

Xn = Op(bn) is equivalent to Xn
bn

= Op(1).

where Kφ = Kφ(p, f) is a constant independent of A(0) and
n and Ξ is a matrix independent of A(0) and n (Kφ and Ξ
are given explicitly in [9]).

Proof. See [9].

Theorem 2 gives global bounds independent of the initial

condition A(0). If one implements Algorithm 1 with a rapidly

decreasing sequence of regularization parameters λ, the rate

of convergence will not depend on C or Kφ, specifically, de-

caying at a rate faster than order n−1/2. The bound implies

convergence rate of at least order n−1/2 if the regularization

parameter tapers to zero fast enough. The same bound holds

for ‖Σ−1
n −Σ−1

0 ‖F for n sufficiently large [9].

7. SIMULATIONS

In this section, we present a simple Kronecker structured

example to empirically compare the performance of three

algorithms. The first algorithm, naive Glasso [7], simply

applies the graphical lasso algorithm without imposing Kro-

necker structure. The second algorithm, FF, is the flip-flop

algorithm [4] which iteratively computes the unpenalized ML

solution. The third algorithm, FFP, is the proposed sparsity

penalized flip-flop algorithm.

The true covariance matrices were held fixed as the sam-

ple size n varies. The true precision matrices X0 := A−1
0 and

Y0 := B−1
0 were randomly generated p.d. matrices based

on the Erdös-Rényi graph model. Figure 1 shows heatmaps

of the case where both are sparse matrices. Performance as-

sessment was based on normalized Frobenius norm error of

the covariance and precision matrix estimates. The regular-

ization parameters λ for all Glasso problems were chosen in

accordance with the predictions of Thm. 2 as c ·
√

log(pf)
n ,

where the constant c was chosen experimentally to optimize

respective performances.

Figure 2 compares the root-mean squared error (rmse)

performance in precision and covariance matrices as a func-

tion of n. There were a total of 10 trial runs for each n. As

far as the precision matrix rmse is concerned, Glasso outper-

forms FF only for very small n. FFP outperforms both Glasso

and FF across all n. In regards to the covariance matrix rmse,

Glasso performs poorly compared to FFP and FF since it does

not take into account the Kronecker product structure.

Figure 3 displays the rmse across three different sparsity

scenarios, as a function of FFP iteration. Both matrices X0

and Y0 were 20 × 20 p.d. matrices. Comparing the last two

cases, we see that although Y0 is dense, the sparsity of X0

helps a lot due to the Kronecker structure of the problem.

8. CONCLUSION

In this paper, an �1-penalized likelihood approach is proposed

for estimating a sparse Kronecker-decomposable covariance
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matrix given n i.i.d. Gaussian samples, leading to an itera-

tive algorithm (FFP). Asymptotic convergence properties and

large-sample statistical consistency of the FFP algorithm were

established.

9. ACKNOWLEDGEMENTS

The authors thank Prof. Shuheng Zhou for helpful input.

10. REFERENCES

[1] M. Bengtsson and P. Zetterberg, “Some notes on the kro-

necker model,” submitted for publication, April 2006.

[2] N. Lu and D. Zimmerman, “The likelihood ratio test for

a separable covariance matrix,” Statistics and Probability
Letters, vol. 73, no. 5, pp. 449–457, May 2005.

[3] K. Werner, M. Jansson, and P. Stoica, “On estimation of

covariance matrices with Kronecker product structure,”

IEEE Trans. on Sig. Proc., vol. 56, no. 2, February 2008.

[4] N. Lu and D. Zimmerman, “On likelihood-based in-

ference for a separable covariance matrix,” Tech. Rep.,

Statistics and Actuarial Science Dept., Univ. of Iowa,

Iowa City, IA, 2004.

[5] S. Boyd and L. Vandenberghe, Convex Optimization,

Cambridge University Press, 2004.

[6] O. Banerjee, L. El Ghaoui, and A. d’Aspremont, “Model

selection through sparse maximum likelihood estimation

for multivariate gaussian or binary data,” Journal of Ma-
chine Learning Research, March 2008.

[7] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse

covariance estimation with the graphical lasso,” Bio-
statistics, vol. 9, no. 3, pp. 432–441, 2008.

[8] Roger A. Horn and Charles R. Johnson, Matrix Analysis,

Cambridge University Press, 1990.

[9] Theodoros Tsiligkaridis and Alfred O. Hero III, “High

dimensional covariance estimation under kronecker prod-

uct structure,” Tech. Rep., Dept. of EECS, Univ. of

Michigan, Ann Arbor, MI, 2011.

Fig. 1. Precision Matrices (Erdös-Rényi construction).

Fig. 2. Normalized rmse of precision matrix estimate (top)

and covariance matrix estimate (bottom) as a function of sam-

ple size for structure exhibited in Fig. 1. Proposed FFP algo-

rithm exhibits best performance.

Fig. 3. Normalized rmse of FFP precision matrix estimate

at successive iterations for case of both factors dense (top

curve), only one factor sparse (middle curve), and both fac-

tors sparse (bottom curve). In all cases the FFP convergence

rate is fast and the steady state rmse improves with sparsity.
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