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ABSTRACT

We investigate the problem of the optimal reconstruction of a gener-
alized Poisson process from its noisy samples. The process is known
to have a finite rate of innovation since it is generated by a random
stream of Diracs with a finite average number of impulses per unit
interval. We formulate the recovery problem in a Bayesian frame-
work and explicitly derive the joint probability density function (pdf)
of the sampled signal. We compare the performance of the optimal
Minimum Mean Square Error (MMSE) estimator with common reg-
ularization techniques such as �1 and Log penalty functions. The
simulation results indicate that, under certain conditions, the regu-
larization techniques can achieve a performance close to the MMSE
method.

Index Terms— Compound Poisson Process, Finite Rate of In-
novation, MMSE, Sparsity, TV Regularization.

1. INTRODUCTION

The concept of sparsity has motivated a number of important signal-
processing developments during the past decade. The resulting algo-
rithms are based on solid variational principles (minimization of the
�1 norm), but they are predominantly deterministic. Motivated by
the classical equivalence between MMSE signal estimation under
the Gaussian hypothesis, MAP, and least-squares regression with a
quadratic �2 regularization, there is a strong incentive to formulate
the recovery of sparse signals in a Bayesian framework. The recent
class of signal models proposed in [1] is ideally suited for this task
because it specifies sparse processes as solutions of stochastic dif-
ferential equations, in complete analogy with the classical theory of
Gaussian stationary processes. The main twist is to replace the tra-
ditional white Gaussian noise excitation by impulsive noise (sparse
innovation). In particular, when the differential system is unstable,
this allows for the generation of piecewise-smooth signals that are
the natural extension of the compound Poisson process, which is
sparse, but also non-stationary.

The generalized Poisson processes characterized in [2] are the
stochastic counterparts of the signals with Finite Rate of Innova-
tion (FRI) [3]. The latter family includes nonuniform splines and
piecewise-polynomial functions as particular cases. A typical FRI
signal has the form

∑
n∈Z

cnϕ(t − tn) where {tn} and {cn} are
random sequences; several choices are available for the function ϕ,
including the Dirac delta distribution and compact-support kernels
[3, 4]. FRI signals can be perfectly reconstructed from their general-
ized samples obtained by uniform sampling of a prefiltered version
of the signal. Originally, Gaussian and ideal prefilters were used
for this purpose; other options such as causal filters with rational
Fourier transform were introduced later [4]. In the recent framework
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of [1, 2], the linear operators acting on the Dirac stream (innova-
tions) play a role similar to the continuous-domain prefilter in the
FRI setup.

In this paper, we focus on estimating the sample values of a sig-
nal with finite rate of innovation. In other words, instead of estimat-
ing the FRI parameters cn, tn, we aim at recovering the samples of
the signal directly from the noisy measurements. We use the gen-
eral stochastic framework of [1] and present results for the special
case of FRI signals. Thanks to the statistical framework, we derive
the joint probability density functions (pdf) of both noiseless and
noisy samples. The main contribution of the paper is to factorize the
joint pdfs by employing the structure of the linear operators acting
on the innovation. The factorization helps us to efficiently imple-
ment the MMSE estimator by benefiting from message-passing al-
gorithms. We then use this MMSE estimator as gold-standard for
evaluating the performance of other denoising methods. With simu-
lations, we show that common sparsity-promoting regularizers such
as the �1-norm approach the MMSE performance under appropriate
conditions.

2. SIGNAL MODEL

We depict in Fig. 1 the general model for the FRI signals considered
in this paper. The input white noise w(x) =

∑
k ckδ(x − tk) is a

random stream of Diracs, where the amplitudes {ck} are identically
and independently distributed (i.i.d.), and where the time instants tk
follow a point process with mean λ. In plain words, there are on
average (b − a)λ Diracs in the interval [a, b] ⊂ R, and the number
and location of the Diracs in two disjoint intervals are independent.
This independence, in addition to the i.i.d. nature of the cks, imply
that the innovation process w(x) is white (impulsive Poisson noise).
It is shown in [2] that, for symmetric probability distribution of cks
(pc) and for rapidly decaying test functions ϕ(x), we have

Zw(ϕ) � E
{
ej〈w,ϕ〉}

= exp

(
− λ

∫
R

(
1− p̂c

(
ϕ(x)

))
dx

)
, (1)

where the scalar product 〈w,ϕ〉 is a random variable and p̂c is the
characteristic function of the random variables {ck}.

The signals of interest are linked to the Dirac stream (innova-
tion) through the linear operators L and L−1: By convention, the
whitening operator is denoted by L while the shaping operator is
represented by L−1. In fact, if L−1 corresponds to a filter (linear
shift-invariant operator), its impulse response plays the same role as
the smoothing kernel in the FRI sampling. In this paper, we restrict
the operator L to be a differential operator of the form

∑n
i=0 aiD

i,

where D stands for the first-order derivative ( d
dx

) and ais are con-
stants. For n ≥ 1, the filter is not uniquely invertible and we need to
impose linear boundary conditions to form L−1. Note that, for the
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Fig. 1. The generation of the stochastic process s(x) with finite rate
of innovation based on the compound Poisson white noise w(x).

mentioned operator L, there is a unique causal Green function ρL(x)
such that LρL(x) = δ(x). The linear shift-invariant operator L−1

LSI

defined by the impulse response ρL(x) is one of several possibilities
for L−1, since, LL−1

LSI is the identity operator. It is not hard to check
that L−1

LSI corresponds to the initially at-rest boundary condition (at
−∞). It is common to refer to the stable L−1

LSI as the inverse of L
without mentioning the boundary condition; however, when L−1

LSI is
unstable, there is no alternative than introducing a boundary condi-
tion that destroys the property of shift-invariance.

For a given input, the difference between the outputs of L−1
LSI

and any other L−1 is a signal in the null space of L that depends on
the boundary conditions. Here, we assume that the linear boundary
conditions are such that the mentioned additive null space part is in-
dependent of w(x) for x > 0. In other words,

(
L−1−L−1

LSI

)
w(x) is

statistically independent of w(x)u(x). This means that the boundary
conditions are fully determined by observing w(x) or, equivalently,
LLSI

−1w(x), at x ∈ (−∞, 0].
Results in spline theory guarantee that, for the introduced dif-

ferential L operators, one can find a discretized shift-invariant oper-
ator Ld such that ϕL(x) = LdL

−1δ(x) is well-localized (compact
support). More precisely, for a differential operator of order n, the
impulse response of Ld is of the form

∑n
k=0 dL[k]δ(x − k) where

{dL[k]}nk=0 represents an FIR filter with n + 1 taps, and the im-
pulse response ϕL(x) of LdL

−1 is supported only on [0, n) [5]. The
impulse response ϕL(x) is usually known as the B-spline.

The last thing to mention about the model is the measurement
procedure. We assume that the stochastic process s(x) is obtained
by “integrating” the Dirac stream. It is sampled uniformly at the in-
tegers and corrupted in the discrete domain by a Gaussian noise that
is independent of the signal. Now, the denoising problem studied in
this paper is to estimate the noise-free samples {s(x = i)}mi=0 from
the noisy measurements {s̃[i]}mi=0.

3. PROBABILITY FACTORIZATION

In order to employ the statistics of the model for estimating the
noise-free samples, we need to obtain the joint distribution of s[i]s
(the samples of s(x) at the integers). For this purpose, we define the
generalized increment process of s associated to the operator L to
be:

u[i] =
n∑

k=0

dL[k]s[i− k] =Ld s(x)
∣∣
x=i

= LdL
−1w(x)

∣∣
x=i

= (w ∗ ϕL)(x)
∣∣
x=i

. (2)

Lemma 1 u[i+N ] is statistically independent of u[i] and s[i] for
N ≥ n and i ≥ 0.

Proof From (2), we have

u[i] = (w ∗ ϕL)(x)
∣∣
x=i

= 〈w,ϕL(i− ·)〉. (3)

Thus, u[i+N ] and u[i] are random variables obtained through
the inner product of the white noise with the B-spline functions
ϕL(i+N − ·) and ϕL(i− ·), respectively. Note that ϕL is sup-
ported on an interval of length n, which shows that ϕL(i+N − ·)
and ϕL(i− ·) have no support in common. Therefore, u[i+N ] and
u[i] are independent due to the whiteness of the innovation.

For the second part, recall that s(x) can be obtained by filtering
the innovation by the causal filter L−1

LSI, and adding a term in the null
space of L which is fully determined by w(x) for x ≤ 0. This shows
that, for i ≥ 0, the statistics of s[i] are fully determined by w(x) for
x ≤ i. On the other hand, as (3) indicates, the statistics of u[i+N ]
depend only on w(x) for i + N − n < x ≤ i + N . Since the two
intervals are disjoint for N ≥ n, s[i] and u[i+N ] are statistically
independent. �

The following theorem shows the main result for factorizing the
joint distribution of {s[k]}mk=0.

Theorem 1 For the mentioned model, we have that

ps
(
s[m], . . . , s[0]

)
=

ps
(
s[2n− 2], . . . , s[0]

)
×

m∏
k=2n−1

∣∣dL[0]∣∣ pu(u[k] ∣∣∣ {u[k − i]
}n−1

i=1

)
. (4)

Proof For k ≥ n, let us first define

v[k] =
[
u[k] . . . u[n] s[n− 1] . . . s[0]

]T
. (5)

It is not hard to check that

v[k] = L(k+1)×(k+1)

[
s[k] . . . s[0]

]T
, (6)

where L(k+1)×(k+1) is an upper-triangular matrix that is formed by
the taps of the FIR filter as

Li,j =

⎧⎨
⎩

dL[j − i] 1 ≤ i ≤ j ≤ n+ i ≤ k + 1
1 k + 2− n ≤ i = j ≤ k + 1
0 otherwise.

(7)

Since L(k+1)×(k+1) is invertible (upper-triangular matrix with non-
zero elements on the main diagonal), the linear equation in (6) sug-
gests that

ps,u
(
v[k]

)
=

ps
(
s[k], . . . , s[0]

)
∣∣ det L(k+1)×(k+1)

∣∣ . (8)

By using Lemma 1, for k ≥ 2n− 1 we have

ps,u
(
v[k]

)
ps,u

(
v[k − 1]

) = ps,u
(
u[k]

∣∣v[k − 1]
)

= pu
(
u[k]

∣∣∣ {u[k − i]
}n−1

i=1

)
. (9)

To conclude the theorem, it is now sufficient to multiply
equations of the form (9) for k = 2n − 1, . . . ,m, and replace
ps,u(v[m]) and ps,u

(
v[2n− 2]

)
by their equivalent forms as in (8).

Note that, due to the upper-triangular structure, the determinant of
L(k+1)×(k+1) is equal to dL[0]

k+1−n. �
Theorem 1 provides the factorization of the general a priori m-

dimensional joint distribution into n-dimensional conditional distri-
butions of u[k]s where n reflects the order of the operator, and a
single (2n − 2)-dimensional term that includes the boundary con-
ditions. The joint probability density of u[k], . . . , u[k + i] can be
derived from (1) as explained in Proposition 1.
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Proposition 1

pu
({u[k + α]}iα=0

)
=

F−1
{ωα}

{
e−λ

∫
R

[
1−p̂c

(∑i
α=0 ωαϕL(α−x)

)]
dx

}∣∣∣∣
u[α]k+i

α=k

, (10)

where F−1
{ωα}{·}

∣∣
u[α]k+i

α=k
denotes the (i + 1)-dimensional inverse

Fourier transform with respect to ωαs at
(
u[k], . . . , u[k + i]

)
.

Proof We show the result by using
∑i

α=0 ωαϕL(k+ α− x) as
ϕ(x) in (1):

Zw

( i∑
α=0

ωαϕL(k + α− x)
)

= E
{
ej

∑i
α=0 ωα〈w,ϕL(k+α−·)〉

}
= E

{
ej

∑i
α=0 ωαu[k+α]

}

=

∫
u[α]k+i

α=k

pu
({u[α]}k+i

α=k

)
ej

∑i
α=0 ωαu[k+α]

= Fu[α]

{
pu

({u[k + α]}iα=0

)}∣∣∣
{ωα}iα=0

. (11)

Thus, the desired joint pdf is achieved by taking the inverse Fourier

transform of Zw

(∑i
α=0 ωαϕL(k + α − x)

)
with respect to wαs.

By employing the explicit form of Zw from (1), we obtain (10). �
Now that we can compute the joint pdf of u[i]s, we can simply

compute the conditional pdfs involved in Theorem 1 by writing them
as a fraction of two joint pdfs.

For the posterior distribution, by using Bayes’ rule and the fact
that the additive noise is Gaussian, we obtain

ps
({s[k]}mk=0

∣∣ {s̃[k]}mk=0

)
=

e
−1

2σ2
n

∑m
k=0(s̃[k]−s[k])2

ps
(
s[m], . . . , s[0]

)
(2πσ2

n)(m+1)/2 ps̃
(
s̃[m], . . . , s̃[0]

) . (12)

The conditional distribution (12) specifies our signal recovery
problem completely, since the MMSE estimation of the noise-free
values {s[k]} is the same as their expected value conditioned to the
noisy observations {s̃[k]}.

4. NUMERICAL RESULTS

For simulations, we consider the simple case of n = 1. The sim-
plest scenario for n = 1 is when L = D = d

dx
and the inverse

is L−1w(x) =
∫ x

0
w(τ)dτ . This choice of L−1 implies s(0) = 0

as the boundary condition; clearly, this boundary condition is inde-
pendent of w(x) for x > 0 (required condition). The processes
obtained in this fashion are called Lévy processes in general; for the
special case of impulsive Poisson innovation, the process consists of
piecewise-constant signals and is called compound Poisson. Figure
2 shows a part of a realization for this process when λ = 0.3 (av-
erage number of Diracs per unit interval) and the jump amplitudes
follow a standard Gaussian distribution.

It is well-known that the discrete counterpart of the continuous-
time differentiation is the finite difference. More precisely, dL[0] =
1 and dL[1] = −1. Here, the B-spline ϕL(x) here is the rectangular
function supported on [0, 1) with constant unit amplitude. For this
special case, Theorem 1 can be rewritten as

ps
(
s[m], . . . , s[0]

)
=

m∏
k=1

pu
(
u[k]

)× ps
(
s[0]

)
, (13)
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Fig. 2. A realization of the piecewise constant signal and the noisy
measurements. The average number of Diracs per unit interval (λ)
of the impulsive innovation process is 0.3 and the jumps follow a
standard Gaussian distribution.

which, in turn, results in

ps
({s[k]}mk=0

∣∣ {s̃[k]}mk=0

)
=

e
−

∑m
k=0(s̃[k]−s[k])2

2σ2
n

∏m
k=1 pu

(
s[k]−s[k−1]

)
×ps

(
s[0]

)
(2πσ2

n)(m+1)/2 ps̃

(
s̃[m],...,s̃[0]

) , (14)

where ps
(
s[0]

)
= δ

(
s[0]

)
. Also, for the pdf of the increment pro-

cess, the general form in Proposition 1 simplifies to

pu(u) = F−1
ω

{
e−λ

∫
R

[
1−p̂c

(
ωϕL(−x)

)]
dx
}∣∣∣

u

= F−1
ω

{
e−λ

(
1−p̂c(ω)

)}∣∣∣
u

= e−λ
(
δ(u) +

∞∑
k=1

λk

n!

(
pc ∗ · · · ∗ pc︸ ︷︷ ︸

k times

)
(u)

)
. (15)

Due to the simple factorization of pu in (15), we are able to
apply the message-passing algorithm which is an efficient tool for
computing the marginal distributions p

(
s[i]

∣∣ {s̃[k]}k) from the joint
conditional pdf. In plain words, the message-passing algorithm is
an elegant iterative way of integrating the joint pdf to obtain all
the marginals simultaneously with an almost-minimal computational
complexity. The general concepts of the message-passing algorithm
can be found in [6] while the implementation details for the specific
case of Lévy processes are available in the companion paper [7].
The associated graph for n = 1 (Lévy) is a tree, which guarantees
the convergence to the desired marginal pdfs in a finite number of
iterations [6].

The performance of various denoising techniques including the
MMSE with the message-passing implementation is shown in Fig.

3 and 4. They plot 10 log10

∑
k

∣∣s[k]−s̃[k]

∣∣2
∑

k

∣∣s[k]−ŝ[k]

∣∣2 under various additive

noise powers which is the improvement of the SNR in dB; the curves
are averaged over 500 different realizations and the innovation (w)
has, on average, 0.5 Diracs per unit interval (λ).

For alternative denoising approaches, we have considered reg-
ularization methods that promote sparsity. The piecewise constant
signals can be viewed as constant signals with sparse (infrequent)
jumps. Thus, the finite differences {u[k]} are sparse, in the sense
that, with some non-zero probability e−λ, where λ is the average
number of Diracs per unit interval, the differences vanish. We use
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Fig. 3. SNR improvement of various denoising methods vs. the
variance of the additive white Gaussian noise. The impulsive Pois-
son innovation contains λ = 0.5 Diracs on average per unit interval
whose amplitudes follow a standard Gaussian distribution.

Fig. 4. SNR improvement of various denoising methods vs. the vari-
ance of the additive white Gaussian noise. The impulsive Poisson
noise contains λ = 0.5 Diracs on average per unit interval whose
amplitudes follow a standard Cauchy distribution.

the following form for the regularization methods:

{ŝ[k]}mk=0 = arg min
{s[k]}

‖s− s̃‖22 + τ
m∑

k=1

Ψ
(
s[k]− s[k − 1]

)
. (16)

Here, we restrict Ψ(x) to be one of the |x|, x2, and log(1 + x2)
functions, which result in Total Variation (TV), Linear Minimum
Mean-Square Error (LMMSE), and Logarithmic (Log) regularizers,
respectively. In the above formulation, the optimum τ depends on
the additive noise power. For setting τ for a given additive noise
power, in the simulations we tuned τ by having oracle knowledge
about the noise-free values for a number of realizations and then, we
used the average τ for the rest of the realizations. The Log regular-
izer is known to be an �1-�0 relaxation for recovering sparse vectors
[8]. This regularizer is not convex; thus, since we use gradient de-
scent methods, we might get trapped into the local minima of the
cost function.

We show in Fig. 3 the results for a Gaussian distribution of the
Dirac amplitudes. We see that, at small noise powers, the TV regu-
larizer almost achieves the MMSE performance. On the other hand,
at large noise powers the statistics of the noisy samples are mainly
governed by the Gaussian noise. There, the curve of the LMMSE
method (which is optimal for Gaussian processes) coincides with
that of MMSE. The results in Fig. 4 are based on the Cauchy dis-
tribution of the amplitudes. This distribution is heavy-tailed and,
even at large Gaussian noise powers, the dominant distribution is still

Cauchy. This, in fact, explains the poor performance of the LMMSE
method. Finally, we see that the Log regularizer, which is some-
how matched to the tail of the Cauchy distribution, better follows
the MMSE performance at large noise powers.

5. CONCLUSION

In this paper, we presented a stochastic framework for studying FIR
signals and we concentrated on the denoising problem. Unlike the
usual approach of estimating the innovation parameters, we directly
focused on the estimation problem by factorizing the joint probabil-
ity distributions. Thanks to the factorized pdf, we were able to imple-
ment the MMSE estimator by using the message-passing algorithm,
thereby obtaining a gold standard against which to compare other
algorithms. In particular, we used our model to compare the per-
formance of regularization techniques based on sparsity constraints
(such as �1 norm) through simulations. Results indicate that, under
certain conditions, the regularization techniques can almost achieve
the MMSE performance.
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