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ABSTRACT

Taking advantage of the structures inherent in many sparse decom-
positions constitutes a promising research axis. In this paper, we
address this problem from a Bayesian point of view. We exploit a
Boltzmann machine, allowing to take a large variety of structures
into account, and focus on the resolution of a joint maximum a pos-
teriori problem. The proposed algorithm, called Structured Bayesian
Orthogonal Matching Pursuit (SBOMP), is a structured extension of
the Bayesian Orthogonal Matching Pursuit algorithm (BOMP) in-
troduced in our previous work [1]. In numerical tests involving a
recovery problem, SBOMP is shown to have good performance over
a wide range of sparsity levels while keeping a reasonable computa-
tional complexity.

Index Terms— Structured sparse representation, Boltzmann
machine, greedy algorithm.

1. INTRODUCTION

Sparse representations (SR) aim at describing a signal as the com-
bination of a small number of elementary signals, or atoms, chosen
from an overcomplete dictionary. Formally, let y ∈ RN be an ob-
served signal and D ∈ RN×M (M ≥ N ) a dictionary of atoms.
Then, one standard formulation of the sparse representation problem
writes

x� = argmin
x

‖y −Dx‖22 + λ‖x‖0, (1)

where ‖x‖0 denotes the �0 pseudo-norm which counts the number
of non-zero elements in x and λ > 0 is a parameter specifying the
trade-off between sparsity and distortion.

Finding the exact solution of (1) is an NP-hard problem: it gen-
erally requires a combinatorial search over the entire solution space.
Therefore, heuristic (but tractable) algorithms have been devised to
deal with this problem. As a well-known example, let us mention
Orthogonal Matching Pursuit (OMP) [2].

More recently, the SR problem has been enhanced by the intro-
duction of structural constraints on the support of the sparse repre-
sentation: the non-zero components of x can no longer be chosen
arbitrarily but must obey some (deterministic or probabilistic) rules.
This problem is often referred to as “structured” sparse represen-
tation. This new paradigm has been found to be relevant in many
application domains and has recently sparked a surged of interest
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in algorithms coping with this problem. The procedures currently
available in the literature can be classified according to the type of
structures they exploit:

1) Group sparsity: in group-sparse signals, coefficients are ei-
ther all non-zero or all zero within prespecified groups of atoms.
One popular way to enforce group sparsity in sparse decompositions
is the use of particular “mixed” norms combining �1- and �2-norms.
The Group-LASSO and Block-OMP algorithms proposed in [3] and
[4] follow this approach.

2) Molecular sparsity: molecular sparsity describes more com-
plex structures, in the particular case where the atoms of the dictio-
nary have a double indexation (e.g., time-frequency atoms). Molec-
ular sparsity can be exploited using a general definition of mixed
norms. This approach has been followed by Kowalski and Torrésani
in [5] for the derivation of the Elitist-LASSO algorithm.

3) Chain and tree-structured sparsity: Trees and chains are el-
ementary structures arising in many signal-processing applications
(e.g., Markov chain, multi-resolution decomposition, etc.) The com-
bination of a tree structure and sparse representations has been stud-
ied in [6]: the authors enforce a tree-structured sparsity by using
a particular penalty term. In [7], Févotte et al. consider a model
promoting chain-structured sparsity via the use of a Markov-chain
probabilistic model.

4) Generic structured sparsity: some more recent approaches do
not focus on a specific type of structure but propose general models
accounting for a wide set of structures. Most of these approaches
are probabilistic. In particular, [8, 9] and [10] have recently empha-
sized the relevance of the Boltzmann machine as a general model for
structured sparse representations.

In this paper, we address the problem of structured SR in a
generic probabilistic model. We introduce a novel pursuit algorithm
looking for a solution of a joint maximum a posteriori (MAP) prob-
lem and implementing the interconnections between the atoms of
the support via a Boltzmann machine. The proposed algorithm can
be seen as a generalization of the so-called Bayesian Orthogonal
Matching Pursuit (BOMP) presented in [1]. Our numerical results
show that the proposed procedure exhibits state-of-the-art perfor-
mance in terms of reconstruction-complexity trade-off.

2. PROBABILISTIC MODEL

Let s ∈ {0, 1}M be a vector defining the support of the sparse repre-
sentation, i.e., the subset of columns of D used to generate y. With-
out loss of generality, we will adopt the following convention: if
si = 1 (resp. si = 0), the ith column of D is (resp. is not) used
to form y. We assume that the columns of D are normalized. De-
noting by di the ith column of D, we then consider the following
observation model:
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y =
M∑
i=1

si xi di + n, (2)

where n is a zero-mean white Gaussian noise with variance σ2.
Therefore,

p(y|x, s) = N (Dsxs, σ
2IN ), (3)

where IN is the N×N -identity matrix and Ds (resp. xs) is a matrix
(resp. vector) made up of the di’s (resp. xi’s) such that si = 1. We
suppose that x obeys the following probabilistic model:

p(x) =
M∏
i=1

p(xi) where p(xi) = N (0, σ2
x), (4)

and s is distributed according to a Boltzmann machine of parameters
b and W:

p(s) ∝ exp(bT s+ sTWs), (5)

where ∝ denotes equality up to a normalization factor. W is a sym-
metric matrix with zeros on the diagonal (elements of W are denoted
by wij , for the ith line and jth column).

Within model (3)-(5), the observation y can thus be seen as the
noisy combination of atoms specified by s. The weights of the com-
bination are realizations of Gaussian distributions whose variance is
independent of the support s.

The Boltzmann machine encompasses many well-known prob-
abilistic models as particular cases. For example, the choice W =
0M×M leads to the Bernoulli model

p(s) ∝ exp(bT s) =
∏
i

exp(bisi) =
∏
i

Ber(pi), (6)

with pi =
1

1+exp(−bi)
. This model is well-known in the literature to

address the unstructured SR problem (see e.g., [1, 11]).

3. JOINT MAP ESTIMATION PROBLEM

The probabilistic framework defined in section 2 allows us to tackle
the SR problem from a Bayesian perspective. As long as (3)-(5) is
the true generative model for the observations y, optimal estimators
can be derived under different Bayesian criteria (mean square error,
mean absolute error, etc). We focus hereafter on the computation of
a solution under a joint maximum a posteriori (MAP) criterion

(x̂, ŝ) = argmax
x,s

log p(x, s|y). (7)

Interestingly, we showed in [1] that the solution of (7) corresponds
(under mild conditions) to the solution of the standard (unstructured)
SR problem (1) for a Bernoulli-Gaussian model i.e., when model (3)-
(5) is considered with W = 0M×M . This result led us to the design
of a new family of Bayesian pursuit algorithms. We developed in
particular a Bayesian version of OMP, the Bayesian OMP (BOMP).
Motivated by this connection between standard formulation and joint
MAP estimation, we propose here to extend BOMP to a structured
version using the generalization of Bernoulli model (6), namely the
Boltzmann machine (5). In the sequel, we will thus refer to the pro-
posed procedure as the “Structured Bayesian Orthogonal Matching
Pursuit” (SBOMP) algorithm.

Note that our work distinguishes here from contributions [8, 10]
in which the authors propose to solve a marginalized MAP estima-
tion of the SR support s, while considering the same Bayesian model
(3)-(5).

4. STRUCTURED BOMP

SBOMP is a greedy algorithm looking for a solution of (7) via a suc-
cession of conditional maximizations. Formally, SBOMP generates
a sequence of estimates {ŝ(n), x̂(n)}∞n=1 defined as

ŝ
(n)
i =

{
s̃
(n)
i if i = i�

ŝ
(n−1)
i otherwise,

(8)

where s̃
(n)
i =argmax

si

{max
xi

log p(x, s|y)} (9)

s. t. (sj , xj) = (ŝ
(n−1)
j , x̂

(n−1)
j ) ∀j �= i,

and x̂(n) =argmax
x

{log p(x, ŝ(n)|y)}. (10)

In a nutshell, SBOMP performs the following updates: at each iter-
ation one single element of s is updated, see (8); the update is based
on a joint optimization of log p(x, s|y) with respect to (si, xi) while
other variables are kept fixed, see (9). Then, in a second step, x is
updated by taking the new support estimate ŝ(n) into account, see
(10).

We see in (8) that the index i� of the element of s which is
updated must be specified. We choose to update the element which
leads to the greatest increase of the objective function, i.e.,

i� =argmax
i

{ max
(si,xi)

log p(x, s|y)} (11)

s. t. (sj , xj) = (ŝ
(n−1)
j , x̂

(n−1)
j ) ∀j �= i.

Note that (9) and (10) corresponds to conditional maximiza-
tions of log p(x, s|y) (with respect to (xi, si) and x respectively).
SBOMP thus defines a descent algorithm (the descent function be-
ing − log p(x, s|y)). Moreover, ŝ(n) (and therefore x̂(n)) can only
take on a finite number of values. Consequently, SBOMP is ensured
to converge to a fixed point in a finite number of iterations.

In order to compare SBOMP to its standard unstructured version
OMP, we give the expressions of update equations (8)-(11) particu-
larized to probabilistic model (3)-(5) in Table 1. The update equa-
tions implemented by OMP are given in Table 2. Note that the for-
mulation of OMP in Table 2 is slightly unconventional for the sake
of comparison with SBOMP.

The solution of problem (9) is given in (12)-(13). s̃
(n)
i corre-

sponds to the value that will be assigned to ŝi if we decide to modify
the ith component of ŝ at iteration n. We see in (12)-(13) that the

value of s̃
(n)
i is fixed via a threshold decision on a metric depend-

ing on the current residual error r(n−1). The value of the thresh-

old Ti depends on the decisions previously made on ŝ
(n−1)
j j �= i.

The prior information on the structure of the sparse representation is
therefore taken into account via a modification of the threshold Ti

through the iterations. Note that the value of s̃
(n)
i can be either 0 or

1. This implies that atom deselection is possible when ŝ
(n−1)
i = 1

and s̃
(n)
i = 0. The step corresponding to (12)-(13) in the OMP algo-

rithm is the trivial operation (19), i.e., OMP can only add atoms to
the support of the sparse representation, irrespective of the decisions
made during the previous iterations.

The choice of the element of ŝ modified at iteration n is given
in (14)-(15). This corresponds to the solution of problem (11). The
function optimized in (14) is made up of three terms which accounts
for different effects. The first term weights the variation of the resid-
ual error if the ith component of the sparse representation is mod-
ified. It corresponds to the objective function considered by OMP

in (20)-(21) when ŝ
(n−1)
i = 0, s̃

(n)
i = 1 and σ2

x → ∞. The last
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Initialization : r(0) = y, ŝ(0) = 0 and x̂(0) = 0.
Repeat :
1. ∀i ∈ {1, . . . ,M}, evaluate

s̃
(n)
i =

{
1 if 〈r(n−1) + x̂

(n−1)
i di,di〉2 > Ti,

0 otherwise,
(12)

where Ti = −2σ2 σ2 + σ2
x

σ2
x

(bi + 2
∑
j �=i

ŝ
(n−1)
j wij), (13)

2. Choose the atom to be modified:

i� =argmin
i

{ 1

2σ2
‖r(n−1) + (x̂

(n−1)
i − x̃

(n)
i )di‖22 (14)

− 1

2σ2
x

(x̂
(n−1)2
i −x̃

(n)2
i ) + (ŝ

(n−1)
i −s̃

(n)
i )(bi + 2

∑
j �=i

ŝ
(n−1)
j wij)},

where x̃
(n)
i = s̃

(n)
i

(
x̂
(n−1)
i + 〈r(n−1),di〉

) σ2
x

σ2 + σ2
x

, (15)

3. Update the SR support

∀i ∈ {1, . . . ,M} ŝ
(n)
i =

{
s̃
(n)
i if i = i�,

ŝ
(n−1)
i otherwise.

(16)

4. Update the SR coefficients

x̂
(n)

ŝ(n) =

(
DT

ŝ(n)Dŝ(n) +
σ2

σ2
x

I‖ŝ(n)‖0

)−1

DT
ŝ(n)y, (17)

and ∀i ∈ {1, . . . ,M} x̂
(n)
i = 0 if ŝ

(n)
i = 0. (18)

5. Update the residual: r(n) = y −∑M
i=1 ŝ

(n)
i x̂

(n)
i di.

Table 1. Definition of the SBOMP algorithm

two terms are not present in the OMP implementation, they stem
from the structured probabilistic model considered in this paper: the
second term accounts for the prior information available on xi, it
vanishes when σ2

x → ∞, while the last term stands for the structure
of the support of the sparse representation. It therefore depends on

the previous decisions, ŝ
(n−1)
i ’s, made on the support.

The support update equations (16) and (22) are identical for
SBOMP and OMP. They model the fact that only one single ele-
ment of the support estimate ŝ can be modified at each iteration.
We remind however the reader that SBOMP update can lead to both
atom selection and deselection whereas OMP is restricted to atom
selections.

Finally, an explicit expression of SBOMP coefficient update (10)
is given in (17)-(18). The corresponding operation is given in (23)-
(24) for OMP. We can notice that SBOMP differs from OMP by the
fact that it exploits the a priori variance σ2

x in the update of the co-
efficients. SBOMP and OMP coeffcient updates reduce to the same
operation when σ2

x → ∞.

5. EXPERIMENTS

In this section, we study the performance of SBOMP by extensive
computer simulations. To that end, we study the ability of SBOMP
to recover the coefficients of the sparse representation and measure
the mean-square error (MSE) between the non-zero coefficients and
their estimates.

The simulation data are generated according to observation
model (3) and the prior model on x (4). For an objective evaluation
of the performance however, we build the SR support regardless the

Initialization : r(0) = y, ŝ(0) = 0.
Repeat :
1. ∀i ∈ {1, . . . ,M}, set

s̃
(n)
i = 1. (19)

2. Choose the atom to be modified:

i� = argmax
i

‖r(n−1) − x̃
(n)
i di‖22, (20)

where x̃
(n)
i = 〈r(n−1),di〉. (21)

3. Update the SR support

∀i ∈ {1, . . . ,M} ŝ
(n)
i =

{
s̃
(n)
i if i = i�,

ŝ
(n−1)
i otherwise.

(22)

4. Update the SR coefficients

x̂
(n)

ŝ(n) =
(
DT

ŝ(n)Dŝ(n)

)−1
DT

ŝ(n)y, (23)

and ∀i ∈ {1, . . . ,M} x̂
(n)
i = 0 if ŝ

(n)
i = 0. (24)

3. Update the residual: r(n) = y −∑M
i=1 ŝ

(n)
i x̂

(n)
i di.

Table 2. Definition of the OMP algorithm

Boltzmann machine (5). Each point of simulation corresponds to a
fixed number of non-zero coefficients and a particular combination
of atoms. The indices of the atoms are thus drawn uniformly at
random once for all observations. We use then the following param-
eters: M = 64, N = 32, σ2 = 10−2, σ2

x = 1. The elements of
the dictionary are generated for each observation as realizations of a
zero-mean Gaussian distribution with variance N−1. For each point
of simulation, we consider 500 observations.

The parameters of the Boltzmann machine are drawn from the a
posteriori distribution p(b,W|s) by means of the “Single-variable
Exchange” algorithm introduced in [12], using wij ∼ U [−1, 1] ∀i, j
and bi ∼ U [−20, 20] ∀i. For each point of simulation, the “Single-
variable Exchange” algorithm is run with a burn-out iteration num-
ber of 1000, we allocate then the 500 following parameter estimates
for the 500 observations of the considered point.

SBOMP is compared to three other state-of-the-art algorithms:
OMP, BOMP, which do not take into account any structure while
looking for the sparse decompositions, and BM MAP OMP in-
troduced by Faktor et al. in [10]. OMP is run until the �2-norm
of the residual drops below

√
Nσ2

n. The Bayesian algorithms
BOMP and SBOMP iterate as long as log p(y, x̂(n), ŝ(n)) >

log p(y, x̂(n−1), ŝ(n−1)).
Figures 1(a) and (b) show the MSE on the non-zero coefficients

obtained for each of the four considered algorithms and two different
setups: in figure (a), the variance σ2

x is supposed to be known while
in figure (b), it is set to σ2

x = 1000 in the three Bayesian algorithms
BOMP, SBOMP and BM MAP OMP to approach a non-informative
prior p(x). For both setups, SBOMP and BM MAP OMP outper-
form OMP and BOMP, confirming the relevance of accounting struc-
tures in sparse decompositions. All three Bayesian algorithms are
susceptible to see its performance modified whether σ2

x is known or
not, but we can see that the performance of BM MAP OMP is more
damaged than the one of BOMP and SBOMP.

Figure 1(c) presents the average running time per trial for each of
the four considered algorithms. Not surprisingly, OMP and BOMP
are the less costly procedures. More interesting is the large gap be-
tween the “structured” algorithms, SBOMP and BM MAP OMP.
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Fig. 1. MSE on non-zero coefficients (figures (a) and (b)) and average running time (figure (c)) vs. the number of non-zero coefficients K.

The latter relies on an iterative process which at each iteration re-
quires the evaluation of a determinant which in high dimension can
be very computationally demanding.

6. CONCLUSION

In this paper, we address the structured SR problem from a Bayesian
point of view. Structures are taken into account by means of a Boltz-
mann machine which allows for the description of a large set of
structures. We propose a greedy SR algorithm, SBOMP, which looks
for the solution of a joint MAP problem by a sequence of conditional
maximizations. SBOMP offers desirable features in comparison to
OMP: it allows for atom deselection and takes the prior informa-
tion about the structure of the sparse representation into account.
We compare the performance of SBOMP to that of another state-of-
the-art algorithm dealing with a Boltzmann machine [10]. If both
“structured” algorithms have similar performance when the prior in-
formation on the sparse coefficient vector is known, the gap widens
when considering a non-informative prior. Moreover, the proposed
algorithm offers a better compromise between performance of recon-
struction and computational cost, since its running time remains rea-
sonable with regard to OMP and its unstructured homologue BOMP.
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