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ABSTRACT

In this paper, we analyze the performance of weighted �1 min-

imization over a non-uniform sparse signal model by extend-

ing the “Gaussian width” analysis proposed in [1]. Our re-

sults are consistent with those of [7] which are currently the

best known ones. However, our methods are less computa-

tionally intensive and can be easily extended to signals which

have more than two sparsity classes. Finally, we also provide

a heuristic for estimating the optimal weights, building on a

more general model presented in [11]. Our results reinforce

the fact that weighted �1 minimization is substantially better

than regular �1 minimization and provide an easy way to cal-

culate the optimal weights.

Index Terms— weighted �1 minimization, compressed

sensing, Gaussian measurements, recovery threshold, Gaus-

sian width

1. INTRODUCTION

In recent years, sparse recovery problems have been the sub-

ject of great interest( [4,6,10]) due to their importance in var-

ious applications. It is now well known that there are algo-

rithms which, under certain conditions, can provably recover

the underlying sparse solution of a system. �1 minimization is

arguably the most popular among these as the �1 norm is the

tightest convex surrogate of the sparsity function (“�0” norm).

The most common form of the �1 minimization problem is as

follows:

min ‖x‖1 subject to Ax = y (1)

where A ∈ R
m×n is the measurement matrix, s ∈ R

n is

the k-sparse solution, y = As ∈ R
m is the corresponding

measurement and we want the solution x∗ of (1) to be equal

to s.

Clearly, this problem is interesting when the system is

underdetermined and when certain properties of A, such as

restricted isometry [4], can guarantee that x∗ = s. An im-

portant problem is the characterization of the performance of

the minimization (1). In particular, the relation between the

sparsity of s, the number of measurements m and the ambi-

ent dimension n has been studied in great detail for Gaussian

measurements ( [1, 3, 5]).

In this work, we investigate a modified �1 minimization

algorithm, which significantly improves over regular �1 min-

imization, by using prior information about the structure of

the “non-uniformly sparse” solution as described in Defini-

tion 2.1.

Contributions: In [7], Khajehnejad et al. use a Grassman

angle approach to calculate the optimal weights. We should

emphasize that by optimal weights we mean the weights that

minimize the number of Gaussian measurements required for

weighted �1 minimization to succeed in recovering the sparse

signal. The approach of [7] requires extensive analytical work

and the numerical procedure for optimal weight calculation is

inefficient for more than two blocks. In this paper, we deter-

mine the optimal weights by extending the methods of [1].

In [1], Stojnic develops a new and relatively simpler method

to obtain the minimum number of measurements m to recover

a sparsity of k and finds the phase transition curve which

matches with the results of [3, 5], which are known to be ex-
act. Consequently, without using complicated techniques, we

are able to provide a method for obtaining optimal weights

and because the analysis in [7] is based on [3, 5], our results

are consistent with [7]. Further, the resulting numerical pro-

cedure for optimal weight computation is cheaper and more

clear. We also provide a heuristic method for estimating the

optimal weight based on the more general “atomic decompo-

sition” model presented in [11].

The structure of this paper is as follows. In the next sec-

tion we define the “non-uniform sparse” model and weighted

�1 minimization and give other supplementary defintions. We

then state the main theorems that will be used in this paper

and proceed to the “Gaussian width” analysis of the weighted

�1 minimization.

2. SIGNAL MODEL

First, we introduce our model and algorithm.

Definition 2.1 (Non-uniformly Sparse Signal) Let K =
{K1,K2, ...,Ku} be a partition of {1, 2, ..., n}, i.e., Ki ∩
Kj = ∅ for i �= j, ∪u

i=1Ki = {1, 2, ..., n} and let |Ki| =
ni = γin for 1 ≤ i ≤ u. Let B = {β1, β2, ..., βu}
be a set of positive numbers in [0, 1]. An n × 1 vector
x = (x1, x2, ..., xn)

T is said to be a non-uniformly sparse
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vector with sparsity fractions B over K if ki = βini entries
of x in Ki are non-zero. Finally, the overall sparsity of the
signal is denoted by k =

∑u
i=1 ki and xi ∈ R

ni is the vec-
tor that corresponds to the entries of x in the i’th block for
1 ≤ i ≤ u.

Observe that, we don’t have any information about the

entries inside a particular block hence it is natural to use the

same weight for all entries of the same block. We use the

following weighted �1 minimization scheme:

min
Ax=y

‖x‖w,1 = min
Ax=y

u∑
i=1

wi‖xi‖1. (2)

where w = {w1, w2, ..., wu} is the weight vector we use. As

argued in [9], one would expect to associate larger weights

to the sparser blocks according to the so called “punish the

sparser” scheme. By determining the optimum weight vec-

tor, we will show that this scheme can significantly improve

regular �1 minimization.

Similar to relevant previous works, it is assumed that mea-

surement matrix is m× n Gaussian. Also, we assume the so-

called “linear regime” where {γi}ui=1, {βi}ui=1 and α = m
n

are constant. Our results will be true asymptotically with high

probability (a.w.h.p.), i.e. as n → ∞.

Finally, the “recovery threshold” of a weighted algorithm

is the minimum α that can guarantee the successful recovery

of a signal obeying the non-uniform model a.w.h.p. Naturally,

the recovery threshold is a function of {βi, γi, wi}ui=1.

3. MAIN THEOREMS

We now state a seminal result from [8] which is the most im-

portant theorem used in this paper.

Theorem 3.1 (Escape through a mesh) Let S be a subset of
the unit Euclidean sphere Sn−1 in R

n. Let Y be a random
(n − m)-dimensional subspace of Rn, distributed uniformly
in the Grassmanian with respect to the Haar measure. Let the
Gaussian width of S , denoted by g(S), be defined as

g(S) = E sup
v∈S

(h̃Tv) (3)

where h̃ is a random column vector in Rn with i.i.d. N (0, 1)
components. Assume that g(S) < (

√
m− 1

4
√
m
). Then

P (Y ∩ S = ∅) > 1− 3.5e−
(
√

m− 1
4
√

m
−g(S))2

18 (4)

Let A be a k × n “Gaussian Matrix” and N (A) denote

the null space of A, i.e. t ∈ N (A) ⇐⇒ At = 0. As

mentioned in [10], it is a well known fact that N (A) is dis-

tributed uniformly in the Grassmanian of (n−k)-dimensional

subspaces of Rn, with respect to the Haar measure.

Since we use Gaussian measurements A, Theorem 3.1

helps one to analyze the null space of A. This idea was first

introduced by Stojnic, in [1], and was used to find various

thresholds for regular �1 minimization [1], [12]. In this pa-

per, we show that same method can be extended to analyze

weighted �1 minimization. To do this, we need to charac-

terize the undesired null space elements because whenever

N (A) does not contain them weighted �1 minimization gives

us the desired sparse solution.

It is known that (see, e.g., [1], [3]), the particular loca-

tions and signs of the non-zero elements of the underlying

sparse solution s are irrelevant to the analysis of the recovery

threshold. The following theorem gives a necessary and suf-

ficient condition for the success of weighted �1 minimization

( [7, 9]):

Theorem 3.2 (Null Space Condition) Assume A ∈ R
m×n

is Gaussian and let s be a k-sparse vector as described in
Definition 2.1. Assume its non-zero components are negative.
Also, let the first n1 components be in K1, the next n2 com-
ponents in K2, and so on. Let the j’th component of the i’th
block si be denoted by sij for 1 ≤ i ≤ u and 1 ≤ j ≤ ni.
Also let si1 = si2 = ... = sini−ki

= 0. Then subject to the
observations y = As, minimization (2) will return s as the
unique solution iff for any t ∈ N (A) we have:

u∑
i=1

⎛
⎝wi

ni∑
j=ni−ki+1

tij

⎞
⎠ <

u∑
i=1

⎛
⎝wi

ni−ki∑
j=1

|tij |
⎞
⎠ (5)

The next section is dedicated to the analysis of the

weighted recovery threshold using Theorems 3.1 and 3.2.

4. ANALYSIS OF THE RECOVERY THRESHOLD

For simplicity, we’ll focus on the case u = 2 and without loss

of generality assume w1 = 1 and w2 = w.

Let Sw be the set of vectors which have unit �2 norm

and which do not satisfy (??). For a given w, we will com-

pute a tight upper bound on g(Sw) and then equate that to(√
m− 1

4
√
m

)
. We set g(h̃,Sw) = maxv∈Sw(h̃

Tv) and, as

a first step, we’ll determine an upper bound Bw on g(h̃,Sw)
for a fixed h̃.

In the following analysis, due to insufficient space, we

will omit some of the intermediate steps and will try to em-

phasize the main points instead. For a complete discussion,

reader is referred to the longer version of this paper [14].

4.1. Upper bound Bw on g(h̃,Sw)

Our analysis will mostly follow that of [1]. Let h̃i
1:(ni−ki)

=

(h̃i
1, h̃

i
2, ..., h̃

i
ni−ki

)T . Further, let |h̃|i(j) be the j’th smallest

magnitude of elements of h̃i
1:(ni−ki)

. Let h = (h1,h2) where

hi = (|h̃|i(1), |h̃|i(2), ..., |h̃|i(ni−ki)
, h̃i

ni−ki+1, ..., h̃
i
n)

T (6)
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By using elementary arguments, g(h̃,Sw) can be expressed

as the outcome of the following optimization ( [1]):

max
y∈Rn

(h1)Ty1 + (h2)Ty2

subject to

i) yij ≥ 0 for all i = 1, 2 and 0 ≤ j ≤ (ni − ki)

ii)

2∑
i=1

⎛
⎝wi

ni∑
j=ni−ki+1

yij

⎞
⎠ ≥

2∑
i=1

⎛
⎝wi

ni−ki∑
j=1

|yij |
⎞
⎠

iii)

2∑
i=1

⎛
⎝ ni∑

j=1

(yij)
2

⎞
⎠ ≤ 1.

Let z = (z1, wz2) where zi ∈ Rni such that zij = 1, 1 ≤
j ≤ ni − ki and zij = −1, ni − ki + 1 ≤ j ≤ ni. The next

step is changing the above maximization problem to a mini-

mization problem by writing out its dual which will provide

us an upper bound gup(h̃,Sw):

min
γ,ν,λ

max
y

hTy − γ‖y‖22 + γ − νzTy + λTy

subject to ν ≥ 0, γ ≥ 0

λi
j ≥ 0 for i = 1, 2 and 0 ≤ j ≤ ni − ki.

After trivially solving the minimization over y and maximiza-

tion over γ we end up with:

gup(h̃,Sw) = min
ν,λ

||λ+ h− νz||2 (7)

subject to ν ≥ 0

λi
j ≥ 0 for i = 1, 2 and 0 ≤ j ≤ ni − ki.

To tackle this problem, we deal with the square of the

objective function in (6), namely ‖λ + h − νz‖22. Now let

λ1 = (λ1
1, λ

1
2, ..., λ

1
c1 , 0, 0, ..., 0)

T where c1 ≤ (n1 − k1) and

λ2 = (λ2
1, λ

2
2, ..., λ

2
c2 , 0, 0, ..., 0)

T where c2 ≤ (n2− k2). Pa-

rameters c1 and c2 will be determined later. This makes the

optimization over ν simpler which can be done by differenti-

ating the objective with respect to ν. Assuming ν is positive,

λi
j’s can be determined by further differentiation and proceed-

ing in a similar way to [1]. Eventually, we end up with the

following lemma for fixed c1, c2.

Lemma 4.1 Let c′ = c1 + w2c2, n′ = n1 + w2n2 and

f(h, z, w, c1, c2) =

(
hT z−∑c1

j=1 h
1
j − w

∑c2
k=1 h

2
k

)
n′ − c′

(8)

Assume

f(h, z, w, c1, c2) ≥ max
{
h1
c1 , h

2
c2

}
(9)

Then g(h̃,Sw) is upper bounded by gup(h̃,Sw, c1, c2) =√√√√ n1∑
j=c1+1

(h1
j )

2 +

n2∑
k=c2+1

(h2
k)

2 − (n′ − c′)f(h, z, w, c1, c2)2

Let Fα(·) be the magnitude distribution of a unit variance

Gaussian RV. For any ε > 0, if c1, c2 are chosen such that

(1− ε)E[f(h, z, w, c1, c2)] = F−1
α

(
c1(1 + ε)

n1(1− β1)

)
(10)

w(1− ε)E[f(h, z, w, c1, c2)] = F−1
α

(
c2(1 + ε)

n2(1− β2)

)
(11)

it can be shown that as n → ∞, (8) will be satisfied except

for an exponentially small probability. Consequently,

E[g(h̃,Sw)] ≤ E[gup(h̃,Sw, c1, c2)] + o(1) (12)

≤
√

E[(gup(h̃,Sw, c1, c2))2] + o(1) (13)

Hence, we have the following theorem:

Theorem 4.1 Let h̃ be an i.i.d. Gaussian vector with entries
having unit variance. h is function of h̃ as given in (5) and
n′, c′ are same as in Lemma 4.1. Then, for a given weight w

E

⎡
⎣ 2∑

i=1

ni∑
j=ci+1

(hi
j)

2

⎤
⎦− (n′ − c′)E[f(h, z, w, c1, c2)]2 (14)

measurements are sufficient for recovering a signal that obeys
Definition 2.1 w.h.p. Here c1, c2 are solutions of (9,10).

Next, letting ε → 0 in (9,10) and using the fact that h̃ is

Gaussian, we restate Theorem 4.2 for the more general case of

u ≥ 2 in a way that is accessible for numerical calculations.

Theorem 4.2 Let ηi, κ, μ be functions of {βi, γi, θi}ui=1 de-
fined as follows

ηi = erfinv
(
1− θi
1− βi

)
for 0 ≤ i ≤ u

κ =

(
u∑

i=1

w2
i γiθi

)−1

μ =

u∑
i=1

wiγi(1− βi)

√
2

π
exp(−η2i )

where θi =
(
1− ci

ni

)
.

Step 1: For 0 ≤ i ≤ u let θi be the solution of:√
2ηi = wiκμ (15)

Step 2: Then, an upper bound to the threshold of weighted
�1 minimization with weight w is called α(w) and is given by
u∑

i=1

γi

{
(1− βi)

(
1 +

2ηi√
π exp(η2i )

− erf(ηi)
)
+ βi

}
−κμ2

Hence α(w) × n measurements are sufficient to recover a
“nonuniformly sparse signal” given in Definition 2.1 w.h.p.

Observe that Steps 1 and 2 in Theorem 4.2 corresponds to

(9,10) and (??) respectively.

Finally, in order to determine the optimal weight, α(w)
is minimized over w which can be done numerically and will

be the topic of the next section.
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5. RESULTS

Comparison with previous work: Our results are consistent

with [7] as simulations suggest we obtain the same optimal

weighting given {βi, γi}ui=1. Since [7] is based on [3] and

exact, this shows our analysis yields the true optimal weight

by using an alternative method.

On the other hand, our method is more accessible: Theo-

rem 4.2 is concise and our numerical computations are much

less intensive . For example, the weight curve in Figure 5

is smooth unlike those of [7]. Curves in [7] were not calcu-

lated with high density because of the high complexity of the

optimal weight calculation [13].

A heuristic to estimate the optimal weight
In [11], a new framework is provided to determine the

approximate thresholds using Gaussian width analysis us-

ing which it can be shown that regular �1 requires α ≥
2(1 + e−1)β (log((1− β)/β) + 1.5) for success. Keeping

this as the reference point, one can come up with the follow-

ing closed form approximation for the optimal weight in the

case of weighted �1 minimization:

w =

√√√√1 + log( 1−β2

β2
)

1 + log( 1−β1

β1
)

(16)

It should be emphasized that (12) is independent of the block

sizes γ1, γ2.

5.1. Simulation results and Conclusion

Figure 5 presents the threshold value α(w) for different val-

ues of w = w2

w1
given the values of β1, β2, γ1, γ2. The value

of the recovery threshold corresponding to the weight given

by the heuristic in (12) is highlighted.

In general, we see a substantial decrease in the recov-

ery threshold from regular �1 minimization. The heuristic,

although not very satisfactory, gives us approximately the op-

timal weight.
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