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Projected ¢;-Minimization for Compressed Sensing

Amin Khajehnejad, Matthew Thill and Babak Hassibi

Abstract—We propose a new algorithm to recover a
sparse signal from a system of linear measurements. By
projecting the measured signal onto a properly chosen
subspace, we can use the projection to zero in on a
low-sparsity portion of our original signal, which we
can recover using /;-minimization. We can then recover
the remaining portion of our signal from an overdeter-
mined system of linear equations. We prove that our
scheme improves the threshold of /;-minimization, and
we derive an upper bound for this new threshold. We
support our theoretical results with numerical simula-
tions which demonstrate that certain classes of signals
come close to achieving this upper bound.

Index terms— Compressed sensing, {1-minimization,
reweighted (1 -minimization, projected £1-minimization.

I. INTRODUCTION

In the past few years, the field of compressed sensing
has received substantial attention, addressing the problem
of recovering a sparse signal from a relatively small set of
linear measurements [1]. If x is a real n-dimensional vector
with k£ nonzero entries, and A is an m X n real matrix,
with & < m < n, we would like to efficiently determine x
knowing y = Ax. Much work has focused on determining
sufficient conditions for variations of the /;-minimization
problem:

in || 1
ain [[%[]1, (1)

to recover x, either with certainty or with high probabil-
ity [2]-[7]. A well established property of ¢;-minimization
is the phase transition property which holds in the regime
of linear system dimensions. Proved originally by Donoho
and Tanner [2], it is known that for the case of Gaussian
measurement matrices, for any given ratio 6 = 7, there
exists a so-called weak threshold (d) for the sparsity of x
such that if £ < i(6), then ¢;-minimization will recover x
with high probability. The practical performance of the ¢;
reconstruction algorithm exhibits a very sharp transition
phase on the sides of the weak threshold, and as such the
theoretical performance bounds of [2] are tight.

Certain extentions of the basis pursuit algorithm (a.k.a.
{1-minimization) have addressed the feasibility of finding
reconstruction methods with better performance than reg-
ular /1-minimization, and in particular with higher weak
recovery thresholds. Examples of previous efforts along
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those lines are [8], [9] which consider reconstruction of non-
uniformly sparse signals given additional prior informa-
tion, and [10]-[12] that study reweighted ¢;-minimization
schemes for improved recovery performance. In particular,
the iterative reweighted algorithm introduced by Kha-
jehnejad et al. [10] is based on identifying a set of indices
S which contains a probabilistically large intersection
with the support set of x, possibly by choosing the k
largest entries of the vector obtained from standard ¢;-
minimization, and then solving a new biased program

min |[Xg|[1 + wl|Xgl|1, (2)
Ax=y

where w is a weight parameter to be chosen greater than
1. Intuitively, this approach punishes indices in S when
attempting to identify the support set of x.

As proved in [10], the above approach yields a recovery
threshold that is strictly higher than that of regular ¢;-
minimization, thus allowing for the recovery of signals with
larger support sets. However, the very involved deriva-
tions of [10] make it difficult to compute explicit bounds
for the threshold under this framework. The current pa-
per presents a framework which covers certain cases of
reweighted ¢;-minimization, but is more conducive to the
analysis and approximation of the threshold improvement
over standard /;-minimization.

We present an alternative extension of the basis pursuit
algorithm, which lends itself to a formidable analysis of
the performance bounds of the method. The algorithm
is based on first identifying a candidate set S for the
support set of x, and considering the submatrix A s whose
columns lie in the index set S. We then project y onto
the orthogonal complement to the column space of Ag.
The reduced projected system is then solved using another
{1-minimization, which is then exploited subsequently to
recover xg through linear matrix inversions. In contrast
to previously suggested iterative schemes, the proposed
two-step projected ¢; algorithm does not involve a set
of weight parameters, which in other algorithms depends
heavily on the signal distribution and the ideality of
the sparsity assumption. In addition, we derive explicit
numerical upper bounds on the performance improvement
of the proposed method, and provide a numerical tool for
a precise calculation of the new threshold. The obtained
upper bounds are very close to the practical values of the
threshold improvement verified by numerical simulations.

The organization of this paper is as follows: In Section II,
we will establish some definitions and notations. In Section
III, we introduce our algorithm. Section IV is dedicated
to the analysis of the algorithm and how it improves the
threshold of /¢;-minimization. In Section V, we provide
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simulation results to compare the performance of our
algorithm for various distributions of the support set, and
analyze which distributions come closest to attaining the
improved threshold.

II. DEFINITIONS AND MODEL

Let x be a k-sparse, n-dimensional vector, with support
set supp(x). By this, we mean |supp(x)| = k. We will
typically assume that x is a Gaussian vector, that is, that
the k entries z;,7 € supp(x) are i.i.d. N(0,1) random
variables. Much of our analysis, however, applies to other
distributions as well. The goal is to recover x from a system
of m Gaussian linear measurements—that is, to determine
x from y = Ax, where, A is an m xn matrix whose entries
are i.i.d. Gaussian. Since recovery beyond the limits of ¢;-
minimization is considered, the primary assumption here is
that the number & of the nonzero entries of x is larger than
the weak recovery threshold of ¢;-minimization, namely
kE = (14 €)u(d)n for some positive €.

III. PROJECTED {1-MINIMIZATION (PJL1) ALGORITHM

We propose the following two step algorithm for recon-
structing the sparse vector x.

Algorithm 1 Two Step Projected ¢;-minimization.

. X
Measurement matrix A", measurement

mx1

1: Input:
vector y

2: Output: Sparse vector x with Ax =y.

3: Perform a standard ¢;-minimization to obtain an esti-
mate x for x.

4: Let S C [n] be the set of indices of the k largest-
magnitude entries of X, where k < u(6)n, and Ag the
m x k submatrix of A with columns indexed by S.
Construct the (m — k) x m orthogonal transformation
As.

5: Let S be the complement of S in [n], and let Ag be
the m x (n— k) submatrix of A with columns indexed
by S. Define the (m — k) x (n — k) reduced measure-
ment system A’ = AJS‘Ag. Perform the reduced /-
minimization,

min

min_[[2]].
A'z=Agy

6: Finally, set 2’ = Ag(y — Agz), where ATS is the
pseudoinverse of Ag, defined as A%, := (ALAg) 1AL,

Al
Return X' = F } .
Z

In this algorithm, & := |S| is a parameter which can be
optimized depending on the signal. We require that k be
less than p(d)n because this is the region over which S' is
guaranteed to have significant overlap with the support set
of x with high probability. Intuitively, the reduced system
Az = Aﬁy in the algorithm allows us to search for a
section of x which we may expect to have relatively small
sparsity. Once we have reconstructed this section of x, we
are left with an overdetermined system of equations, so we

may perfectly recover the remaining section, corresponding
to the smaller, high-sparsity portion of x. In fact, Algo-
rithm 1 is equivalent to the reweighted ¢;-minimization
problem:

min wsl|xsl[1 + wsl[Xzll1,

Ax=y

where we set wg = 0 and wg = 1. To see this we note that
certainly the condition Ax =y implies that AﬁAgi{g =
Aﬁy. Conversely, we can write y =y + y§, where yg is
in the column space of Ag and yfg- is in the orthogonal
complement to this column space. Then the condition
AJS‘A§§(§ = Aty is equivalent to Ag‘Agﬁg = y&, and
the vector difference y — AgXz lies in the column space
of Ag, so there is some Xg such that Agxs + AgXg =1y,
and we see that the constraints for the two minimization
problems are in fact equivalent.

IV. ANALYSIS OF THE PJL1 ALGORITHM

To analyze the behavior of Algorithm 1, let S denote
the k-support of X, i.e., the k largest-magnitude entries
of %X, and suppose |S N supp(x)] = (1 — €)k, so that
|S N supp(x)| = ek. We first note that the modified mea-
surement matrix A’ = A é Az will maintain the property
of having a rotationally-invariant null space (that is, the
distribution of the null space is invariant under unitary
transformations). This is because the same is true of both
A§ and Az individually, and they are independent of each
other. Consequently, the weak threshold o applies to the
reduced /;-minimization in Algorithm 1.

We can now give the following upper bound on e which
will ensure that x will be recovered by Algorithm 1 with
high probability:

Theorem 1: Let x be a k = (1 4 €y)u(0)n-sparse signal,
and S a set of indices such that [S N supp(x)| = (1 —
€)k. Then Algorithm 1 will recover x with high probability
provided that

1 — (1 +€o)p(d) (5 —(1+ 60)#(5))
(1 + €0)p(d) L—(1+eo)u(d)) "

3)

€=

Proof: Note that we can re-express the minimization
in step 5 of the algorithm as

min_||z[;.

A'z=A'xg
Since xg is ek-sparse, we see that z will recover xg with
m—k
n—k
this in terms of ¢y and §, we obtain the desired result. H

high probability provided that ne—fk <u ( ) Rewriting

A. Upper Bound on Threshold Improvement

For a given §, we denote the recovery threshold of the
PJL1 algorithm by fi(d). Following Theorem 1, we note
that in the above framework, the maximum size of the
support set that can be recovered with high probability is

e=isi+e-she (P5) @
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where |S| < p(d)n. Since p(-) is a sublinear function, it
can be shown that for fixed § = *, the expression on the
right hand side of (4) is an increasing function of |.S|. Thus
we obtain an upper bound by setting |S| = p(d)n. If we
call our new threshold fi(d), then we can express this as
follows:

(8) < () + (1 — () (fj—jjg;) L)

We stress that the above inequality clearly expresses the
maximum possible improvement in the threshold of ¢;-
minimization as an additive term. In Figure 1, we plot
both the standard ¢;-minimization threshold (as computed
using the results of [7]) as well as the upper bound for /i(d)
from Equation (5).
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Fig. 1. The improvement of the Projected £;-minimization threshold
(as estimated from the bound in Equation 5) over the threshold from
standard ¢;-minimization.

B. Ezact Threshold Improvement

While (5) is a computable upper bound for the desired
threshold, we could attempt to evaluate the threshold as
follows: If we consider the fraction f of the set S which
is actually contained in supp(x), then the actual sparsity
that can be recovered is

m—|S
k= f|S —|S — . 6
1181+ (0 = s (2215 (©
Thus, we could attempt to optimize over both |S| and f.
We make the following definition:

Definition 1: Let x be an n-dimensional signal, and let
[ and v be given fractions between 0 and 1. Let A be an
m x n Gaussian measurement matrix, and let X be the
vector recovered by the ¢1-minimization of (1). Then we
define ¢(3,v) to be the largest fraction f such that if x
is vn-sparse, then with high probability, the largest On
entries of X contain at least a fraction f of the support set
of x.

Essentially, ¢(3,v) is a probabilistic lower bound on
the fraction f in Equation 6, and determines the support
estimation capability of ¢;-minimization. ¢(8,v) heavily

depends on the distribution of the nonzero component of
x, and is generally larger for sparse signals with faster
decaying dynamics. It follows from this definition that the
real threshold of PJL1 algorithm, /i(d), is the solution to
the following maximization program:

fi(0) = maxy (7)
0 <3< u(d)
0-p
st.q v<Bf+(1-pP)p (m)
f<e(B,v)

C. Tightness of Improvement Bound

In general, a tight bound for ¢(8,v) might not be
available, and thus the computation of the exact numerical
value for fi(d) is not necessarily tractable. In [10], it was
shown that for certain distributions on the nonzero
component of the signal (including Gaussian), ¢(3,v) is
asymptotically computable as 3 and v approach p(d) and
becomes arbitrarily close to 1. In general, building upon
the derivations from [10], we obtain the following lemma,
the proof of which is omitted due to lack of space:

Lemma 1: Let x be a k-sparse, n-dimensional real signal
whose support set entries are i.i.d. with the pdf p(-).
Let r be the minimum positive integer such that the 7"
derivative of p(-) evaluated at 0, p(")(0), is nonzero. Then
if B < pu(d), we have

P(Br) =10 (w=p@)* ). (3

Intuitively, the value of ¢(3,v) in the maximization (7)
which corresponds to the optimal value of v should be
close to 1, in which case the maximum is achieved when
B =~ p(d), giving us our bound. As a consequence of
the above lemma, one can prove that for distributions
p(-) with some finite order nonzero value at origin, the
threshold fi(d) is strictly larger than u(d). However, it
does not provide a reasonable numerical estimation on
how large this improvement is. Future work could focus
on finding more exact approximations for ¢(f3,r) and
explicit computations of ji(d).

V. SIMULATIONS AND RESULTS

Figure 2 shows the results of our algorithm’s attempts to
reconstruct randomly-generated signals with various dis-
tributions for the support sets, and exhibits the improved
recovery rates over those of standard ¢;-minimization. Our
algorithm demonstrates some improvement in the regime
of Bernoulli signals, and significantly more for the classes
of Gaussian and exponentially-decaying signals, which we
define as follows:

Definition 2: Let x be a k-sparse, n-dimensional signal,
with support set entries x1, xo, ..., x. Assume that the x;
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are ordered in decreasing order of magnitude, |z;| > |z;;1].
We say that x is an exponentially decaying signal if there
is some positive constant ¢, independent of n and k, such
that for each i = 1,...,k — 1, we have |z;11] < c|z;].

In Figure 3, we show the results of the attempts of PJL1
to recover randomly-generated exponentially decaying sig-
nals for different values of § = *. We use a dimension of
n = 100 in this case. Our results show that we observe
nearly complete recovery of almost all signals provided
that the sparsity fraction % is less than the upper bound
for fi(0) from Equation (5).
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Fig. 2. Comparison of standard ¢;-minimization with Projected ¢;-
minimization for k-sparse signals with support sets having Bernoulli,
Gaussian, and Exponentially-Decaying distributions. Here, we use
values of m = 112, n = 200.

()

Fig. 3. Empirical recovery fraction of PJL1 algorithm for n = 100
(black and white cells); PJL1’s improved threshold upper bound as
in Equation (5) (red) and that of regular ¢;-minimization (green).
Black cells represent perfect recovery. The red threshold is nearly
achieved by a signal with an exponentially-decaying distribution on
its support set.

VI. CONCLUSION

We proved that the PJL1 algorithm has an increased
threshold over that of standard ¢;-minimization, and we
derived an explicit upper bound for this threshold. We
then exhibited numerical simulations which showed that
this bound is nearly achieved by certain classes of support-
set distributions, including Gaussians, and in the case of
exponentially decaying signals for large n.

It would be interesting to derive tighter bounds on the
threshold of PJL1 for various distributions, and to de-
termine which distributions can achieve the upper bound
for the threshold derived in this paper. Based on our
algorithm’s performance on exponentially decaying sig-
nals, it is reasonable to conjecture that distributions with
sharply-decreasing tails might achieve the threshold bound
obtained in this paper. It would also be worthwhile to
analyze the robustness of the algorithm to noisy signals.
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