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ABSTRACT

The scalar sparse under-determined linear regression problem

has had a rapid development with the multivariate version be-

ing of more recent interest. In this paper we pose a vector

l0 penalized multivariate regression problem to generate co-

efficient vectors with shared sparsity profile and then solve

the problem with a new cyclic descent algorithm. We give

optimality conditions and also discuss penalty parameter se-

lection. Finally we present simulation results that compare

our algorithm with alternatives.

Index Terms— multivariate regression, multiple mea-

surement vectors, sparsity, lo, cyclic descent

1. INTRODUCTION

The task of representing a signal of interest as a linear combi-

nation of few elementary signals extracted from a redundant

dictionary arises in many applications. Although it is NP hard

to find a maximum sparse solution over a general redundant

dictionary, many algorithms have shown the ability to recover

solutions under certain conditions.

Sparse regression algorithms can be broadly divided in

to two types. Algorithms such as forward selection [1] and

orthogonal matching pursuit (OMP) [2] are greedy algorithms

that iteratively minimize a mean squared error followed by an

ad-hoc stopping criterion.

The other type of algorithms solve a penalized or con-

strained least squares criterion. The l0 norm penalty promises

maximum sparsity however its nonlinear discrete nature poses

great difficulty in finding a global minimum. Thus attention

has been focussed on convex relaxations of the l0 norm such

as l1 leading to the LASSO [3], [4]. The FOCUSS algorithm

[5] is based on the lp(1 > p > 0) penalty. Alternatively the

l0 norm is approximated by a differentiable function as in [6].

While multivariate over-determined regression has a long

history in statistics [7], [8] the under-determined case has had

much less attention particularly in a sparse setting. The sparse

version has been motivated by applications such as neuromag-

netic inverse problems [9], direction-of-arrival [10], channel
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equalization [11], and array processing [12] where the multi-

variate regression problem naturally exists.

A number of sparse scalar regression algorithms have

been extended to the multivariate case. Simultaneous orthog-

onal matching pursuit (SOMP) is presented in [13], [14]. Al-

gorithms that minimize multivariate versions of the penalized

or constrained least squares criterion were also developed.

[15] and [16] presents algorithms based on the extension of l1
norm and [17] presents the extension of lp norm. The vector

l0 norm is approximated by a differentiable zero mean Gaus-

sian function in [10]. The ReMBo algorithm [18] converts

the multivariate regression to a scalar regression by randomly

combining the measurement vectors. The performance of

multivariate regression algorithms have been compared under

various conditions [19], [20] but most of the work has been

done on noiseless systems.

In this paper we develop a cyclic descent algorithm to

minimize a vector l0 penalized multivariate regression cri-

terion. Cyclic descent is like a classic Gauss-Seidel algo-

rithm as opposed to Landweber based algorithms such as [21]

which are like classic Jacobi algorithms.

The remainder of the paper is organized as follows. Sec-

tion 2 introduces the notation and develops the multivariate l0
penalized regression problem. Section 3 presents the cyclic

descent algorithm followed by a discussion of algorithm ini-

tialization, termination, optimality conditions and penalty pa-

rameter selection. Section 4 has simulations comparing the

performance of the algorithm with that of existing algorithms.

Conclusions are in section 5.

2. VECTOR L0 PENALIZED LEAST SQUARES

Consider the multivariate measurement system :

y(c) = Xβ(c) + ε, c = 1, . . . , d,

where y(c) is a n dimensional measurement vector, Xn×p is

a regression matrix or dictionary and β(c) is a p dimensional

coefficient vector. When n < p, X is called a redundant

dictionary and the system is under-determined. When d mea-

surement vectors are collected together we can rewrite this

as,

Yn×d = Xn×pBp×d + E, (1)
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where Yn×d = [y(1), . . . , y(d)], Bp×d = [β(1), . . . , β(d)] and

d < n. This is a multivariate regression model. We will need

to refer to both rows and columns of B and use the following

compact notation,

B = [βrc] = [β(1), . . . , β(d)] =

⎡
⎢⎣

βT
1
...

βT
p

⎤
⎥⎦ ,

and similarly for Y and X matrices. We seek a row sparse B
by minimizing the following vector l0 penalized least squares

criterion.

J(B) =
d∑

c=1

‖y(c) −Xβ(c)‖2 + h

p∑
r=1

I(‖βr‖ �= 0), (2)

where βr, a d dimensional vector, is the rth row of the B
matrix and ‖ ‖ is the Euclidean norm. I(‖βr‖ �= 0) = 1
if ‖βr‖ �= 0 and otherwise it equals 0. The first term of the

criterion determines the quality of fit and the second term in-

troduces sparsity by penalizing the rows of B. h is the penalty

parameter that determines the tradeoff between quality of fit

and sparsity.

The vector l0 criterion was used previously in another

context in [22]; it removes complete rows of B in one

go. It should not be confused with the scalar l0 penalty∑p
1

∑d
1 I(βrc �= 0) which only removes individual elements

of B.

3. V-L0LS-CD

We now derive a cyclic descent iteration for minimizing (2).

We call the algorithm V-L0LS-CD (Vector l0 penalized Least

Squares via Cyclic Descent). We obtain,

Result I: V-L0LS-CD. Given Bk−1 the update for the uth

row βu of B at the kth iteration is,

βk
u =

zk−1
u

‖x(u)‖2 I(‖z
k−1
u ‖ > ‖x(u)‖

√
h), (3)

where zk−1
u = Ek−1,T

−u x(u), E
k−1
−u = Y − X−uB

k−1
−u , X−u

is X with its uth column removed and Bk−1
−u is Bk−1 with its

uth row removed.

Proof: The least squares term of the criterion can be

rewritten as
∑d

c=1 ‖y(c)−Xβ(c)‖2 = tr(Y −XB)T (Y −XB)
= tr(Y T −BTXT )(Y T −BTXT )T , where tr(·) is the trace

of the matrix.

At the kth iteration, decompose k = lp+ u where l is an

integer and 1 ≤ u ≤ p. Fix all the βr’s at their value at the

kth iteration except for βu. Then we can rewrite the criterion

as,

J(βu)=tr(Y T−Bk−1,T
−u XT

−u−βux
T
(u))(Y

T−Bk−1,T
−u XT

−u−βux
T
(u))

T

+ h
∑
r �=u

I(‖βk−1
r ‖ �= 0) + hI(‖βu‖ �= 0),

J(βu)=tr(Ek−1,T
−u Ek−1

−u )−2tr(βux
T
(u)E

k−1
−u ) + ‖βu‖2‖x(u)‖2

+ h
∑
r �=u

I(‖βk−1
r ‖ �= 0) + hI(‖βu‖ �= 0).

Set zk−1
u = Ek−1,T

−u x(u), then tr(βux
T
(u)E

k−1
−u ) = zk−1,T

u βu.

Add and subtract ‖zk−1
u ‖2/‖x(u)‖2 from J(βu). Then drop

terms that do not depend on βu to get R(βu),

R(βu) =

(
zk−1
u

‖x(u)‖ − ‖x(u)‖βu

)2

+ hI(‖βu‖ �= 0).

The minimizer of R(βu) delivers the cyclic descent update.

R(0) = ‖zk−1
u ‖2/‖x(u)‖2, while for βu �= 0, R(βu) is min-

imized at βu = zk−1
u /‖x(u)‖2 giving minimized value h.

Thus the minimum is at 0 if ‖zk−1
u ‖2/‖x(u)‖2 ≤ h or equiv-

alently if ‖zk−1
u ‖ ≤ ‖x(u)‖

√
h and the result I follows.

We can further express the update as follows,

zk−1
u

‖x(u)‖2 =
1

‖x(u)‖2 [E
k−1,T
−u x(u)],

=
1

‖x(u)‖2 [E
k−1,Tx(u)] + βk−1

u ,

where Ek−1 = Y −XBk−1. Thus,

zk−1
u

‖x(u)‖2 = γk−1
u + βk−1

u ,

where γk−1
u = [Ek−1,Tx(u)]/‖x(u)‖2. We thus obtain,

Result II: The V-L0LS-CD update of result I can be re-

expressed as,

βk
u = (γk−1

u + βk−1
u ) I(‖x(u)‖‖γk−1

u + βk−1
u ‖ >

√
h). (4)

3.1. Optimality Conditions

Optimality conditions for scalar regression with scalar l0
penalty were derived in [21]. Here we extend them to multi-

variate regression with vector l0 penalty.

Result III: Optimality conditions for J(B),

Define Γ0 = {j : ‖β̇j‖ = 0}, Γc = {j : ‖β̇j‖ �= 0}. Then

Ḃ is a local minimum of J(B) iff,

(a) ‖x(u)‖‖γj‖ ≤ √
h, j ∈ Γ0.

(b) γj = 0, j ∈ Γc.

(c) ‖x(u)‖‖β̇j‖ >
√
h, j ∈ Γc.

Proof: The result can be established by an analysis of the

fixed points of (4) and a modification of the method of [21];

details will be given elsewhere.
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3.2. V-L0LS-CD algorithm

From result III it is clear that the algorithm will terminate at

a local minimum. Thus proper initialization is very important

especially for under-determined systems. We have tried vari-

ous initialization methods and found that initializing with the

solution to the l1 penalized least squares problem Bl1 seems

to provide the best results. Further discussion is provided in

section 4.

Given X and Y , set B0 = Bl1 . Start from k = 1 and

increment k by one at the end of each iteration. At the kth it-

eration decompose k and find u, find the value of βk
u from (4)

and update B. Every time p iterations get completed, check if

the termination criterion is met. The algorithm can be termi-

nated when J(Bk) − J(Bk+1) ≤ tolerance or when (a) and

(b) of the optimality conditions given in section 3.1 are met.

3.3. Penalty Parameter Selection

The penalty parameter h determines the emphasis given to

the two terms of the criterion (2). The importance of proper

selection of h has been widely neglected in the literature. [10]

sets h = 3 for a range of signal to noise ratios (SNR) and [17]

uses an l-curve method to select the h. However the l-curve

method has been heavily criticized in [23], [24]. We use the

Bayesian information criterion (BIC) to select h.

4. SIMULATION

For all the simulations the data was generated as follows.

The dictionary X is created by entries from a Gaussian ran-

dom variable with 0 mean and unit variance. We scaled the

columns of X to have unit norm ‖x(u)‖ = 1, u = 1, . . . , p.

Sparsity of B for an under-determined system is 1 − k/n,

where k is the number of non zero rows of B. The locations

of the non zero rows were selected from a discrete uniform

distribution and the non zero rows were created by entries

from a Gaussian random variable with 0 mean and unit vari-

ance. For a given X , B and SNR value the Y was generated

from (1), where E contain noise vectors of zero mean and σ2

variance. σ2 depends on the SNR level and we assume that

the noise vectors are independent from each other (correlation

matrix =σ2I).

SNR =

∑d
u=1 ‖Xβ(u)‖2
n× d× σ2

.

A preliminary set of simulations is done to get h by BIC.

This h is then used in a second set of simulations to study the

algorithm performance. The selected h is kept fixed at each

iteration within an algorithm unlike in [17].

The performance of an algorithm can be measured by the

Parameter mean squared error (MSE),

Parameter MSE = E

(∑d
u=1 ‖β̂(u) − β(u)‖2∑d

u=1 ‖β(u)‖2

)
,

where β̂(u) are the columns of the estimate B̂ and β(u) are the

columns of the original B matrix. E(·) denote the expected

value. The quality of the estimate can also be measured by

how well the estimate recovers the original model. Define

Γ0 = {u : ‖βu‖ = 0}, Γc = {u : ‖βu‖ �= 0}, Γ̂0 =

{u : ‖β̂u‖ = 0} and Γ̂c = {u : ‖β̂u‖ �= 0}. Then we

can define true positive (TP)= |Γc

⋂
Γ̃c|, false negative (FN)

= |Γc

⋂
Γ̃0|, false positive (FP) = |Γ0

⋂
Γ̃c| and true negative

(TN) = |Γ0

⋂
Γ̃0|, where | | represent the cardinality of the

set. Now we can define true positive rate (TPR= TP/(TP +
FN)) and false positive rate (FPR= FP/(FP + TN)) which

are important performance indicators to measure how well the

estimates select the correct model.

We will compare V-L0LS-CD with vector l1 penalized

least squares [16], regularized M-FOCUSS [17], JLZA

[10](we use tuning parameter settings recommended in [10])

and SOMP [13]. Vector l1 penalized least squares is intro-

duced in [16], but is solved by second order cone program-

ming; instead we use cyclic descent(V-L1LS-CD). Since the

criterion is convex, both algorithms will produce the same

answer. As stated in [17], we set p = 0.8 and at the end of the

algorithm we perform orthogonal projection of Y on to the

atoms selected by the algorithm. [17] perform hard thresh-

olding of the estimates of regularized M-FOCUSS so that the

sparsity of the estimates would equal that of the original B
matrix. We omitted this step as the sparsity of the original B
matrix is generally unknown. We initialize V-L0LS-CD with

all zeros B0 = 0 as well as with the estimate of V-L1LS-CD

B0 = Bl1 to show the importance of initialization.

We use dimensions similar to [17]; n = 20, p = 30. X is

kept it fixed through out the simulation.

First we investigate the variation of TPR, FPR and Param-

eter MSE with sparsity. We set d = 3 and SNR= 10 and vary

k from 2 to 10. For each sparsity level we generated 50B ma-

trices and using each B matrix we generated 100 Y matrices.

Results are given in figure 1.

V-L1LS-CD has the highest TPR, however it also has the

highest FPR. This means that V-L1LS-CD produces estimates

with very low sparsity and is thus undesirable. V-L0LS-CD

with B0 = Bl1 has the next highest TPR while maintaining

the lowest FPR. Furthermore V-L0LS-CD with B0 = Bl1

has the lowest Parameter MSE specially towards the lower

sparsity levels. Thus in this example V-L0LS-CD with B0 =
Bl1 is superior to the others.

Secondly we investigated the variation of TPR, FPR and

Parameter MSE with SNR. We fixed d = 2, k = 7 and varied

SNR from 30 to 3. Results are given in figure 2.

Similar to the earlier example V-L1LS-CD has very high

FPR and V-L0LS-CD with B0 = Bl1 has the lowest FPR.

Furthermore V-L0LS-CD with B0 = Bl1 has the lowest Pa-

rameter MSE.

From both these examples it is clear that when considered

individually V-L1LS-CD produces very low sparsity results

with very high FPR and V-L0LS-CD with B0 = 0 produces
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results with very low TPR. However when V-L0LS-CD is ini-

tialized with V-L1LS-CD estimate it produces the best results.
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Fig. 1. Variation with sparsity.
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5. CONCLUSION

In this paper a cyclic descent based algorithm(V-L0LS-CD)

was proposed to minimize the vector l0 penalized least

squares criterion. We have presented the optimality con-

ditions of the algorithm and discussed the proper selection

of the penalty parameter. The simulation results show that

V-L0LS-CD initialized with the estimate of V-L1LS-CD pro-

duces superior results in terms of TPR, FPR and Parameter

MSE when compared with existing algorithms.
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