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ABSTRACT

For compressive sensing of dynamic sparse signals, we develop an
iterative greedy search algorithm based on subspace pursuit (SP) that
can incorporate sequential predictions, thereby taking advantage of
its low complexity while improving recovery performance by ex-
ploiting correlations described by a state space model. The algo-
rithm, which we call dynamic subspace pursuit (DSP), is presented
and experimentally validated. It exhibits a graceful degradation at
deteriorating signal conditions while capable of yielding substantial
performance gains as conditions improve.

Index Terms— Compressive sensing, recursive reconstruction,
sparse reconstruction.

1. INTRODUCTION

Compressive Sensing (CS) [1] problems assume a sparse-signal
model, undersampled by a linear measurement process. The algo-
rithms for CS can be separated into three broad classes: convex
relaxation, Bayesian inference, and iterative greedy search (IGS).
For large-dimensional CS signal-reconstruction, IGS algorithms
offer computationally efficient solutions by detecting and recon-
structing the active signal coefficients in a least-squares framework.
Examples of such IGS algorithms are orthogonal matching pursuit
(OMP) [2] and subspace pursuit (SP) [3] and several variants of
them. These algorithms may use some prior information, such as the
maximum allowable cardinality of the ‘support set’ (defined as the
set of non-zero signal coordinates of the underlying sparse signal).

A recent trend in CS is the recovery of dynamic sparse signals,
exploiting temporal/spectral/spatial correlations as in the CS appli-
cation scenarios of MRI [4] and spectrum sensing [5]. In [6], the
overall methodology is sequential and can be seen as a two-step
approach: (1) support-set detection of the sparse signal, and (2)
reduced-order recovery using prior information on the detected sup-
port set. For a reasonable detection of support set, [6] uses convex
relaxation algorithms. Then, a standard Kalman filter (KF) is em-
ployed to use prior information for sequential signal recovery. With-
out explicit support set detection, [7] uses KF to estimate the en-
tire signal and enforces sparsity by imposing an approximate norm
constraint. However, the work of [7] validates their algorithm for
a signal with a static sparsity pattern (i.e. an unknown pattern that
does not evolve over time). Similarly, [8] considers scenarios with
static sparsity pattern and solves the reconstruction of a temporally
evolving sparse signal with multiple measurement vectors in a batch
Bayesian learning framework with unknown model parameters.

This work was partially supported by the Swedish Research Council un-
der contract 621-2011-5847.

A notable omission in existing research work is the development
of IGS algorithms that can use prior information to recover dynamic
sparse signals. In this paper we are interested in generalizing the
IGS algorithms for sequential estimation of such processes, thereby
taking advantage of their low complexity. We develop such an algo-
rithm based on the subspace pursuit and through experimental sim-
ulations we show that it provides a graceful degradation at higher
measurement noise levels and/or lower measurement signal dimen-
sions, while capable of yielding substantial gains at more favorable
signal conditions.

Notation: ‖x‖0 denotes l0 ‘norm’, i.e. the number of non-zero
coefficients of the vector x. A⊕B is the direct sum of matrices. |S|
and Sc are the cardinality and complement of set S, respectively.
(·)∗ is the Hermitian transpose operator. A† the Moore-Penrose
pseudoinverse of matrix A. A[I,J ] denotes a submatrix of A with
elements from row and column indices listed in ordered sets I and
J . Similarly, the column vector x[I] contains the elements of x with
indices from set I.

2. SIGNAL MODEL

Let the state vector xt ∈ C
N be sparse with a dynamically evolving

sparsity pattern, represented by the ‘support set’ Ix,t ⊂ {1, . . . , N}.
We will assume ‖xt‖0 ≡ |Ix,t| ≤ K. Let λji denote the state
transition probability j → i of the non-zero signal coordinate j. The
transition probabilities determine the transition Ix,t → Ix,t+1.

For xt we use an autoregressive (AR) process model with the
transition of the non-zero signal coordinate j → i,

xi,t+1 = αijxj,t + wi,t, (1)

where xj,t denotes the jth component of xt and wi,t is the associ-
ated innovation. All active components are assumed to have variance
σ2
x. The process xt can be written compactly as a linear state-space

model with random transition matrices,

xt+1 = Atxt +Btwt, (2)

where E[wt] = 0, E[wtw
∗
t−l] = Qtδ(l) ∈ C

N×N . For all j ∈
Ix,t and i ∈ Ix,t+1, the non-zero elements of At ∈ C

N×N and
the diagonal matrix Bt ∈ C

N×N are aij,t = αij,t and bii,t = 1,
respectively. The model parameters αij,t, λji and Qt are assumed
to be known.

As an example consider a sparse process, N = 200, K = 10
and number of snapshots T = 100, with a slowly varying sparsity
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pattern Ix,t following1

λji =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.90 i = j

0.05 i = j ± 1, if j 	∈ {1, N}
0.10 i = j + 1, if j = 1

0.10 i = j − 1, if j = N

0 |i− j| > 1

. (3)

A realization of such a dynamic sparse process is illustrated in fig-
ure 1. This choice of λji is intended to model the strong temporal
correlation of sparse signals exhibited in e.g. MRI [9].
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Fig. 1. Evolving sparsity pattern Ix,t with (N,K, T ) =
(200, 10, 200) and transition probabilities (3).

The standard CS measurement setup applies,

yt = Hxt + nt ∈ C
M , (4)

with E[nt] = 0, E[ntn
∗
t ] = Rt. The sensing matrix H =

[h1 · · · hN ] ∈ C
M×N , where K < M < N and fulfills the re-

stricted isometry property, which means that its columns are ‘nearly’
orthogonal [1]. Both H and Rt are given.

3. PREDICTIVE ITERATIVE GREEDY SEARCH

3.1. Incorporation of prior information

SP constructs a support set I ⊂ {1, . . . , N} by correlating mea-
surement residuals r = yt − H[·,I]x̂[I] with the column vectors,
or ‘atoms’ hi. The coefficients corresponding to a hypothesized
support set Ĩ are reconstructed based on a least-squares criterion,
x̂[Ĩ],t = H†

[·,Ĩ]yt. The indices i ∈ Ĩ of the Kmax largest magnitudes

|x̂i,t| are used to form I .
For sake of clarity SP is summarized in Algorithm 1. Here the

function indexmax(K, |zi|, I) returns the indices of the K largest
non-zero magnitudes |zi| for i ∈ I.

Now assume prior statistical information of the state vector ex-
ists in the form of a prediction x̂−

t and its error covariance matrix
P−

t . We use the error statistics of the prediction to improve the de-
tection performance. The measurement residual based on the predic-
tion is r− = yt −Hx̂−

t = Hx̃−
t + nt, where x̃−

t is the prediction
error. The power of the correlation magnitude of atom i,

E
[∣∣h∗

i r
−∣∣2] = E

⎡
⎣
∣∣∣∣∣∣h

∗
ihix̃

−
i,t +

∑
j �=i

h∗
ihj x̃

−
j,t + h∗

int

∣∣∣∣∣∣
2⎤
⎦ ,

1The two cases j = 1 or j = N are necessary for the edge states.

Algorithm 1 Subspace Pursuit (SP)

1: Given: yt, H and Kmax

2: Set I = indexmax(Kmax, |h∗
iyt|, ·),

3: k = 0, r0 = yt −H[·,I]H
†
[·,I]yt

4: repeat
5: k := k + 1
6: J = indexmax(Kmax, |h∗

i rk−1|, ·)
7: Ĩ = I ∪ J
8: x̂[Ĩ],t = H†

[·,Ĩ]yt

9: I := indexmax(Kmax, |x̂i,t|, Ĩ)
10: x̂[I],t = H†

[·,I]yt; x̂[Ic],t = 0

11: rk = yt −H[·,I]x̂[I],t

12: until (‖rk‖2 > ‖rk−1‖2)
13: Output: x̂t and I

is approximated by

γi � p−ii,t + h∗
iRthi, (5)

using h∗
ihj ≈ δ(i−j) and omitting the influence of the interference

terms h∗
ihj x̃

−
j,t. Hence γi embodies the uncertainty of predicting

atom i, and applying the weighting |h∗
i r|/γi will amplify correlation

magnitudes with low uncertainty, and vice versa.
The prior can also be used for reconstruction, solving the

weighed least-squares problem

x̂[I],t = argmin
x[I]∈C|I|

∥∥∥∥
[

yt

x̂−
[I],t

]
−

[
H[·,I]
Ik

]
x[I]

∥∥∥∥
2

R−1
t ⊕S−1

t

, (6)

where St = P−
[I,I],t and k = |I|, which is the linear MMSE esti-

mator provided I is the correct support set [10]. Since I is not given
but successively constructed, (6) solves an approximate problem by
disregarding any correlations between the elements of sets I and Ic.
For brevity we let MMSE-rec denote a function that solves (6), and
can be computed by a measurement update of form:

x̂[I],t = x̂−
[I],t +Kt

(
yt −H[·,I]x̂

−
[I],t

)
,

where Kt = StH
∗
[·,I](H[·,I]StH

∗
[·,I] +Rt)

−1.
Combining the weighted correlations and the MMSE recon-

struction, we develop a predictive SP (PrSP) in Algorithm 2. Our
approach can be generalized to several other IGS algorithms.

3.2. Dynamic Subspace Pursuit

In order to predict the process (2) we model the random transition
matrix At by Ft, where the elements are set as fij,t = αij,tλji.
This enables the formulation of a filtering problem.

Let I denote the final set of detected atoms after the application
of a predictive greedy search algorithm then the updated matrix Pt is
computed block-wise corresponding to the set I and its complement,

Ic. First, P[I,I],t =
(
I|I| −P−

[I,I],tH
∗
[·,I]W

−1
t H[·,I]

)
P−

[I,I],t is

the posterior error covariance [10], where

Wt = (H[·,I]P
−
[I,I],tH

∗
[·,I] +Rt). (7)

Second, the uncertainty of the zero coefficients is preserved by
P[Ic,Ic],t = P−

[Ic,Ic],t. Finally, to ensure positive definiteness the

cross-correlations between elements corresponding to I and Ic are
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Algorithm 2 Predictive Subspace Pursuit (PrSP)

1: Given: yt,H,Rt, x̂
−
t , P−

t and Kmax

2: Compute γi using (5)
3: Set I := indexmax(Kmax, |x̂−

i,t|, ·)
4: J = indexmax(Kmax, |h∗

iyt|/γi, ·),
5: Ĩ = I ∪ J
6: x̂[Ĩ],t =MMSE-rec(yt,H,Rt, x̂

−
t ,P

−
t , Ĩ)

7: I := indexmax(Kmax, |x̂i,t|, Ĩ)
8: x̂[I],t =MMSE-rec(yt,H,Rt, x̂

−
t ,P

−
t , I),

9: k = 0, r0 = yt −H[·,I]x̂[I],t

10: repeat
11: k := k + 1
12: J = indexmax(Kmax, |h∗

i rk−1|/γi, ·)
13: Ĩ = I ∪ J
14: x̂[Ĩ],t =MMSE-rec(yt,H,Rt, x̂

−
t ,P

−
t , Ĩ)

15: I := indexmax(Kmax, |x̂i,t|, Ĩ)
16: x̂[I],t =MMSE-rec(yt,H,Rt, x̂

−
t ,P

−
t , I);

17: x̂[Ic],t = 0
18: rk = yt −H[·,I]x̂[I],t

19: until (‖rk‖2 > ‖rk−1‖2)
20: Output: x̂t and I

set P[I,Ic],t = 0 and P[Ic,I],t = 0, in line with the approximate
MMSE reconstruction (6).

The reconstruction x̂t is subsequently used to linearly predict
the state at t + 1 by x̂−

t+1 = Ftx̂t, and the error covariance matrix

is propagated by the equation, P−
t+1 = FtPtF

∗
t + Qt. Putting

these blocks together we develop a dynamic subspace pursuit (DSP),
which can be thought of an instance of a broader class of dynamic
IGS algorithms.

Algorithm 3 : Dynamic Subspace Pursuit (DSP)

1: Initialization x̂−
0 and P−

0

2: for t = 0, . . . do
3: %Measurement update
4: [xt, I] =PrSP(yt,H,Rt, x̂

−
t ,P

−
t ,Kmax)

5: Wt = (H[·,I]P
−
[I,I],tH

∗
[·,I] +Rt)

6: P[I,I],t = (I|I| −P−
[I,I],tH

∗
[·,I]W

−1
t H[·,I])P

−
[I,I],t

7: P[Ic,Ic],t = P−
[Ic,Ic],t; P[I,Ic],t = 0; P[Ic,I],t = 0

8: %Prediction
9: x̂−

t+1 = Ftx̂t

10: P−
t+1 = FtPtF

∗
t +Qt

11: end for

4. EXPERIMENTS AND RESULTS

We evaluate DSP with respect to static SP and convex relaxation
based basis pursuit denoising (BPDN) [1] algorithms. We also show
the performance of a ‘genie-aided’ Kalman filter (KF) which pro-
vides a bound for MMSE-based reconstruction of linear processes.
The genie-aided approach is given the sparsity pattern Ix,t a priori,
and hence the bound is not necessarily tight.

4.1. Signal generation

As an example we consider a sparse process, N = 200, K = 10
and number of snapshots T = 100, with oscillating coefficients

according to an AR-model as in (1) with αij = α ≡ −0.8, and
Qt = σ2

wIN . The sparsity pattern transitions, Ix,t → Ix,t+1, are
determined by transition probabilities λji which are set in the exper-
iments below. The transition of each active state j ∈ Ix,t is gen-
erated by a first-order Markov chain with λji. If two states in Ix,t
happen to transition into one, a new state is randomly assigned to
Ix,t+1, to ensure that the sparsity level is constant in the experiment.

The entries of the sensing matrix, H, are set by randomly draw-
ing from a Gaussian distribution N (0, 1) followed by unit-norm col-
umn scaling. The measurement noise covariance matrix has form
Rt = σ2

nIM . Process and measurement noise are generated as
wt ∼ N (0,Qt) and nt ∼ N (0,Rt), respectively.

In the experiment, the signal-to-measurement noise level

SMNR �
E
[∑

t ‖xt‖22
]

E
[∑

t ‖nt‖22
] , (8)

is varied, while fixing E[‖xt‖22] ≡ 1 so that σ2
n = 1

M×SMNR
. We

also vary the fraction of measurements κ = M/N .
The signal-to-reconstruction error ratio, defined as

SRER �
E
[∑

t ‖xt‖22
]

E
[∑

t ‖xt − x̂t‖22
] , (9)

is used as a performance measure and is the inverse of the normal-
ized MSE. Note that SRER = 0 dB, i.e. no reconstruction gain, is
equivalent of using x̂t = 0.

4.2. Algorithm initialization

For the predictive algorithms—DSP and genie-aided KF—tested be-
low we use the mean and variance of an autoregressive process as

initial values, x̂−
0 = 0 and P−

0 = σ2
xIN where σ2

x =
σ2
w

1−α2 . In
these algorithms we set Kmax = K for consistent comparisons, al-
though strict equality is not a requirement.

Here we mention that BPDN [1] solves

x̂t = argmin
xt∈RN

‖xt‖1 subject to ‖yt −Hxt‖2 ≤ ε, (10)

where the slack parameter ε is determined by the measurement noise

power, as ε =
√

σ2
n(M + (2

√
2M)) following [11, 12]. Note that

BPDN does not provide a K-element solution. It is also unable to
use prediction. The code for BPDN is taken from the l1-magic tool-
box.

4.3. Results

In the first experiment we set λji according to (3). We ran 100 Monte
Carlo simulations, where a new realization of {xt,yt}Tt=1 and H
was generated for each run. The performance of BPDN, static SP
and DSP, when varying SMNR at a fixed fraction of measurements
κ = 0.25, is compared in figure 2. DSP overtakes static BPDN and
SP low SMNR levels, while exhibiting a similar graceful degradation
as BPDN since both take into account the noise level. As SMNR in-
creases the gains of DSP are substantial, from approximately +2 dB
to +14 dB in the SMNR range 7 to 30 dB.

In figure 3 the SMNR-level is fixed to 15 dB and instead κ is
varied. A threshold effect is visible as κ decreases below 0.2 and
detection performance drops rapidly. DSP consistently better than
static SP across all levels of κ, but diminishes as κ increases. BPDN,
however, does not adapt well to improving signal conditions.
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Fig. 2. SRER versus SMNR at κ = 0.25 and λji according to (3).
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Fig. 3. SRER versus κ = M/N at SMNR = 15 dB and λji accord-
ing to (3).

Finally we let λji = δ(i− j), i.e. a fixed but unknown sparsity
pattern, and compare DSP to the bound provided by the genie-aided
KF, illustrated in figure 4. The performance of DSP is nearly iden-
tical as before and approaches that of the KF. At SMNR 20 dB, the
gap is about 10.6 and 3.6 dB for SP and DSP respectively.

5. CONCLUSIONS

We have developed a dynamic subspace pursuit that can use sequen-
tial predictions for dynamic compressive sensing, as an instance of a
broader class of dynamic IGS algorithms. It incorporates prior sta-
tistical information using linear MMSE reconstruction and weighted
correlations. The algorithm was experimentally tested on a sparse
signal with oscillating coefficients and evolving sparsity pattern. The
results show that it exhibits graceful degradation at low SMNR re-
gions while capable of yielding substantial performance gains as the
SMNR level increases.
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