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ABSTRACT
The success of sparse reconstruction based classification al-

gorithms largely depends on the choice of overcomplete bases

(dictionary). Existing methods either use the training samples

as the dictionary elements or learn a dictionary by optimizing

a cost function with an additional discriminating component.

While the former method requires a good number of train-

ing samples per class and is not suitable for video signals,

the later adds instability and more computational load. This

paper presents a sparse reconstruction based classification al-

gorithm that mitigates the above difficulties. We argue that

learning class-specific dictionaries, one per class, is a natural

approach to discrimination. We describe each training signal

by an error vector consisting of the reconstruction errors the

signal produces w.r.t each dictionary. This representation is

robust to noise, occlusion and is also highly discriminative.

The efficacy of the proposed method is demonstrated in terms

of high accuracy for image-based Species and Face recogni-

tion and video-based Action recognition.

Index Terms— classification, class-specific dictionary,

overcomplete, reconstruction error, sparse representation.

1. INTRODUCTION

Sparse decomposition of signals has emerged as a popular

research front in recent years. The basic idea is to represent

a signal with a linear combination of a small number of basis

functions. It is observed that signals such as audio, images

and videos admit sparse representation w.r.t some properly

chosen basis functions. For example, music signals are sparse

in Fourier bases and many natural images have sparse repre-

sentation in wavelets bases.

In practice, signals are often found to contain mixed

structures that can not be efficiently captured by sinusoids or

wavelets alone. This leads to the idea of combining multiple

bases to create an overcomplete bases - where the number

of basis vectors is greater than the dimensionality of the in-

put signal. A set of overcomplete bases (dictionary) offers

greater flexibility in representing the essential structure in a
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signal which results in higher sparsity in the transform do-

main. Other advantages of such representation are robustness

to additive noise, occlusion and translation of the input signal

[1]. An overcomplete dictionary however is redundant i.e. for

a given signal there can be many different representations;

this redundancy can be removed by imposing proper sparsity

constraints. To address this, stable algorithms based on con-

vex optimization [2] or greedy pursuits [3] exist in literature.

A critical task is to choose the appropriate sparsifying

bases. One can choose from pre-defined bases (curvelets,

variants of wavelets etc. or build a dictionary by concate-

nating all the training examples in columns [4]. A more

generalized approach is to learn the dictionary from a set of

examples so that the dictionary elements are better-adapted to

the given data. Such dictionaries have been shown to achieve

better results compared to off-the-shelf ones [5].

The theory of sparse representation is primarily suit-

able for classical signal processing problems like denoising,

compression etc. Recently a work on face recognition [4]

showed that sparse representation is naturally discriminative

- it selects only those basis vectors among many, that most

compactly represent a signal and therefore is useful for clas-

sification. The idea of sparse decomposition has also been

extended to other classification problems [6, 7, 8]. Among

these [4] and [6] are purely reconstructive i.e. the label of a

test image is determined by the label of the dictionary ele-

ments producing the lowest reconstruction error. Such recon-

struction errors, though robust against noise and occlusion,

are not discriminative enough. To increase the discriminative

power of the reconstruction errors, [7] builds a dictionary by

jointly optimizing an energy formula containing both sparse

reconstruction and class discrimination components. How-

ever, this approach introduces further difficulty to the already

complicated optimization task.

In this paper, we propose a new idea for increasing the

discriminative power of the sparse reconstruction errors, for

the purpose of classification. The proposed method relies on

a set of class-specific dictionaries - each learnt to represent

a single class. By learning a dictionary per class, we expect

that a dictionary tailored to represent a particular class will

give rise to a lower reconstruction error while approximating

signals of that class; simultaneously, it will produce larger
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reconstruction errors for signals belonging to a different

class. We exploit this inherent discriminating nature of class-

specific dictionaries for classification. To describe each input

signal a feature vector is constructed which consists of all

the reconstruction errors the signal produces w.r.t each dictio-

nary. We also note that the signals of the same class follow a

grossly similar pattern of reconstruction errors. This is shown

in fig. 1. This joint representation of reconstruction errors is

robust to noise, distortions and missing data/occlusion and is

also discriminative. Moreover, the error vectors can be used

with any standard, reliable classifiers like Support Vector

Machine (SVM) or Nearest Neighbor (NN), that can further

improve the classification accuracy. Our proposed method

is applicable to both image and video classification. Ex-

perimental evaluations are presented for three classification

tasks - species identification (image based), face recognition

(image based) and action recognition (video based). For all

applications our results are rather encouraging.

2. THE PROPOSED METHOD

Consider a labeled dataset of images or videos having N dif-

ferent classes. The available training samples per class is m.

The training samples are represented as Iij , i = 1, 2, ..., N
and j = 1, 2, ...,m. First, we intend to learn N different dic-

tionaries, one per class, such that each dictionary is adapted to

only one class. The dictionaries can be trained using a good

number of raw image/video patches or any other important

features extracted from the data. We use randomly extracted

overlapping patches to train the dictionaries for images and

local spatio-temporal features for videos. Let the set of p fea-

ture vectors extracted from a training sample of a certain class

be {xi}p
i=1, x ∈ R

d. Thus for this case, the set of all features

obtained from the m available training samples X̂ = {xi}mp
i=1

are used to train the dictionary of that class.

2.1. Random Projection

The features are usually high dimensional i.e. d is typically

large. Recall that an overcomplete dictionary has more basis

vectors than the dimensionality of the input signal. The high

value of d thus seriously limits the speed and applicability of

our method. A natural solution is to reduce the dimensionality

using Principal Component Analysis (PCA), Linear Discrim-

inant Analysis etc. But these traditional methods are slow

and data-dependent i.e. the process has to be repeated every

time a new datapoint is added. Recently, Random Projection

(RP) has emerged as a powerful tool for dimensionality re-

duction [9]. Theoretical results show that the projections of

a high dimensional vectors on a random lower-dimensional

subspace can preserve the distances between vectors quite re-

liably. The original d-dimensional features are projected onto

an n dimensional subspace (n << d) by premultiplying X̂ by

a random matrix R ∈ R
n×d. In practice, any normally dis-

Fig. 1. Shown are the reconstruction errors generated by 4

training samples of same class w.r.t. different dictionaries.

The error vectors have their minima at dictionary 1 indicating

the dictionary they are closest to; also the maxima for each

shown vector corresponds to the same dictionary. Note that,

the errors follow a similar pattern for all samples.

tributed R with zero mean and unit variance serves the pur-

pose. The dimensionality reduction step then simplifies to a

simple matrix multiplication.

X = RX̂ (1)

The reduced data matrix X ∈ R
n×mp contains projections

(not true projections, because the vectors are not orthogonal)

of X̂ on some random n dimensional subspace.

2.2. Dictionary Learning

After projecting the set of mp features, the reduced data-

matrix X ∈ R
n×mp is obtained. The next step is to learn an

overcomplete dictionary Φ ∈ R
n×k having k (k > n) atoms

over which X has a sparse representation Y = {yi}mp
i=1,

yi ∈ R
k. This optimization problem can be framed as

min
Φ,Y ‖X − ΦY‖2

F , s.t. ‖yi‖0 ≤ τ (2)

or, alternatively as

min
Φ,Y ‖X − ΦY‖2

F , s.t. ‖yi‖1 ≤ τ (3)

where ‖.‖F is the Frobenious matrix norm and ‖.‖0 is the �0
seminorm that counts the number of non-zero elements in a

vector. We employ a fast dictionary learning algorithm called

K-SVD that solves (2). It performs two steps at each itera-

tion: (i) sparse coding and (ii) dictionary update. In the first

step, Φ is kept fixed and Y is computed. Next, the atoms

of a dictionary are updated sequentially, allowing the relevant

coefficients in Y to change as well. For the details of this

algorithm please refer to [5].
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(a) AT&T face dataset

(b) Nematodes dataset

Fig. 2. Sample images from the image datasets used.

2.3. Reconstruction based classification

Using K-SVD, N class-specific dictionaries Φ1,Φ2...ΦN are

learnt. Then each training sample is approximated by the N
dictionaries with some constant sparsity τ which generates N
different reconstruction errors. Let εγ denote the reconstruc-

tion error corresponding to the dictionary Φγ . Define εγ as

εγ =

√√√√1
p

p∑
i=1

‖xi − Φγyγ
i ‖2

2 (4)

For every training sample Iij , i = 1, 2, ..., N and j =
1, 2, ...,m an error vector Eij is computed as

Eij =
[
ε1ij , ε2ij , ... εN

ij

]T
(5)

Given a query signal, its corresponding error vector Eq is

computed. The classification is performed in an NN frame-

work where the distance between Eq and Eij is computed as

d (Eq,Eij) =
√

(Eq − Eij)
T L (Eq − Eij) (6)

In (6), L is the Mahalanobis distance metric learnt using an

optimization algorithm presented in [10].

3. PERFORMANCE EVALUATION

Experimental evidence for the proposed classification ap-

proach is provided for three classification problems: species

identification, face recognition and action recognition.

3.1. Image based classification

We use two different image datasets - AT&T dataset for face

recognition and the Nematodes dataset for biological species

identification. For both datasets, 1000 random patches of size

24 × 24 are extracted from each image. The patch vectors

are projected onto a 64-dimensional subspace. The patch and

reduced feature dimensions are found empirically. The class-

specific dictionaries are learnt using n = 64, k = 128, τ = 8
and 20 K-SVD iterations. We compare our results with the

convex optimization based image classification approach pro-

posed in [4] which we have implemented using a standard �1

Approach Recognition rate(%)

�1 optimization [4] 94.3

Eigenface [12] 92.6

Our method (1NN) 96.5
Our method (3NN) 95.6

Table 1. Results on the AT&T Face dataset.

Approach Recognition rate (%)

�1 optimization [4] 54.0

Compression based [11] 56.0

Our method (1NN) 64.0
Our method (3NN) 64.0

Table 2. Results on the Nematodes dataset.

solver. We also provide comparison with other well-known

methods for each application.

The AT&T face dataset: This benchmark dataset contains

400 grayscale images of 40 individuals in 10 poses. The im-

ages were taken at different times, with varying illumination,

facial expressions and details. Each image is downsampled

by a factor of 2. The training set is constructed by randomly

selecting 7 images per class and the rest is used for testing.

The results shown in Table 1 are the mean accuracy computed

over 10 runs. Our results show improvements over both ex-

isting methods which use the same image and feature dimen-

sions. The �1 approach uses 64 random projections and the

Eigenface method uses 64 principal components.

The Nematodes dataset [11] is a collection of 50 color

images (converted to grayscale) of 5 nematode species [11].

Nematodes are a diverse phylum of wormlike animals, with

great commercial and medical importance. Nematodes, be-

cause of their diversity, are known to be extremely difficult to

be classify correctly. Images are downsampled by a factor of

4 to be consistent with the image size and other parameters.

We have adopted a leave-one-out scheme for the evaluation of

this dataset to allow direct comparisons to the results obtained

by the original authors. The classification results shown in Ta-

ble 2 show 8% improvement over the state-of-the-art.

3.2. Video based classification

The UCF sports dataset [13] is one of the more challenging

datasets for action recognition. It contains about 200 real ac-

tion sequences collected from various sports videos featured

on broadcast television channels. The dataset exhibits a wide

range of scenes and viewpoints, occlusion, cluttered back-

ground, variations in illumination, scale and motion disconti-

nuity. The action classes are: diving, golf swinging, kicking,

lifting, horse riding, running, skating, swinging and walking.

Action sequences are commonly described as a collection

of local spatio-temporal features. We choose the very pop-

ular cuboids feature detector [14] and concatenated gradient
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Fig. 3. Sample frames from the UCF sports video dataset.

Approach Accuracy (%)

Hough transform [15] 86.6

Local trinary patterns [16] 79.2

Our method (1NN) 81.4
Our method (3NN) 82.8

Table 3. Results on the UCF sports dataset.

descriptors [14] for motion description. The features are ob-

tained at 2 spatial and 2 temporal scales. The high dimen-

sional descriptors are reduced to 128 dimensional subspace.

The dictionaries are learnt using k = 256, τ = 12 and 20
K-SVD iterations. Like [15, 16], a leave-one-out scheme is

adopted for evaluation. Sparse representation based classifi-

cation of video signals is rare. We have thus compared our

results with the state-of-the-art achieved on this dataset. Our

classification accuracy (Table 3) is lower than that of [15]

which is obtained with more sophisticated features and a com-

putationally expensive classification algorithm.

4. CONCLUSION

We proposed a sparse classification algorithm based on learnt

class-specific dictionaries. The proposed algorithm is generic

- it is applicable to a variety of classification tasks involving

images as well as videos. The novelty of this work lies in the

representation of each datapoint in terms of the reconstruc-

tion errors produced by each of the class-specific dictionar-

ies. The advantages of the proposed framework are: (i) each

class-specific dictionary can be learnt independently; thus the

learning process does not have to be repeated when a new

class of data is added, (ii) RP reduces computational load sig-

nificantly, (iii) the error based representation is discriminative

and robust to noise and occlusion, (iv) the error vectors can be

used as features in any traditional classifier. Superior recog-

nition accuracies achieved on a variety of classification tasks

confirm the strength of the proposed method. We have exper-

imented with datasets having 5, 10 and 40 classes. An impor-

tant question is if this framework is suitable for datasets with

larger number of classes. This can be addressed in a future

work.
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