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ABSTRACT
In this paper we present a novel model based sparse princi-

pal component analysis method based on the l0 penalty. We

develop an estimation method based on the generalized EM

algorithm and iterative hard thresholding and an associated

model selection method based on Bayesian information cri-

terion (BIC). The method is compared to a previous sparse

PCA method using both simulated data and DNA microarray

data.

Index Terms— principal component analysis, sparsity,

estimation.

1. INTRODUCTION

Sparse principal component analysis is a relatively recent ex-

tension of traditional principal component analysis (PCA).

The idea is to seek sparse component loadings while explain-

ing as much variance of the data set as possible.

There are two kinds of sparse PCA: sparse variable PCA

(svPCA) [1, 2] and sparse loading PCA (slPCA) [3, 4, 5, 6, 7].

svPCA removes some of the original variables completely by

simultaneously zeroing out all their loadings. slPCA keeps all

of the original variables but zeroes out some of their loadings.

Sparse PCA has, for example, been found useful for genomic

data sets [4, 5, 6, 7] and medical imaging data [1, 2].

In this paper we develop a novel model based slPCA

method using the l0 penalty which we call sparse loading

noisy PCA (slnPCA). An estimation method based on the

generalized EM algorithm is constructed. We modify BIC [8]

to choose the associated tuning parameters. The method is

compared to the sparse loading PCA method in [4] by using

simulations, and a DNA expression microarrays data set.

In section 2 we review noisy PCA (nPCA). The slnPCA

method is described in section 3, where we develop an esti-

mation and model selection method. We also give formulas

for computing the explained variance of the slnPCA. Section

4 gives simulation examples and a DNA microarray data ex-

ample. Finally in section 5 conclusions are drawn.

1.1. Notation

Vectors and matrices are denoted by boldface letters. x ∼
N(m,C) means that the random vector x is Gaussian dis-

tributed with mean m and covariance C. I(x �= 0) is the

indicator function that is equal to 1 if x is not equal to zero

and equal to 0 else. If G is an M × r matrix we denote its

column vectors by g(j), j = 1, ..., r and its row vectors by

gT
i , i = 1, ...,M . � is the Hadamard product.

2. NOISY PCA

Noisy PCA (nPCA) [9] is a structured covariance model

whose maximum likelihood estimator yields PCA. The model

is given by

yt = Gut + εt, t = 1, ..., T, (1)

where yt is a zero-mean M×1 vector, G is an M×r loading

matrix, εt ∼ N(0, σ2IM ), ut ∼ N(0, Ir), and εt and ut are

uncorrelated. The normalized (divided by T ) log-likelihood

function is given by

lθ(Y ) = −1

2
tr(SyΩ

−1)− 1

2
log |Ω|,

where Ω = GGT + σ2IM , Y = [y1, ...,yT ]
T , Sy =

1
T Y Y T and θ = (vec(G)T , σ2)T . It can be shown that the

maximum likelihood estimates of G and σ2 are given by

Ĝ = P r(Lr − σ̂2Ir)
1/2RT

σ̂2 =
1

M − r

M∑
j=r+1

lj ,

where Lr = diag(l1, ..., lr) is a diagonal matrix containing

the r largest eigenvalues of Sy; P r contains the r first eigen-

vectors of Sy in its columns; R is an arbitrary rotation matrix.

The estimated noisy principal components (nPCs) Û =
[û1, ..., ûT ]

T are given by Û = Y ĜW−1, where W =

Ĝ
T
Ĝ+ σ̂2Ir.

3. SPARSE LOADING NPCA

We obtain sparse solutions by penalizing the number of en-

tries in G. The penalized likelihood is then

Jθ(Y ) = −lθ(Y ) +
h

2
‖G‖0,
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where ‖G‖0 =
∑M

v=1

∑r
j=1 I(gv,j �= 0) and gv,j is the v,j-

th element of G. This should not be confused with our earlier

work [2] where we zero out rows of G all at once; here the

penalty zeros out individual entries in G.

3.1. Estimation

We maximize the sparse loading nPCA (slnPCA0) criterion

with the generalized EM algorithm. The penalized normal-

ized complete likelihood is

Jθ(Y ,U) = lθ(Y ,U)− h

2
‖G‖0,

where the complete normalized log-likelihood is given by

lθ(Y ,U) = −M

2
log σ2 − 1

T

T∑
t=1

‖yt −Gut‖2
2σ2

− 1

2T

T∑
t=1

uT
t ut

In the E-step we compute the penalized EM functional

EMp(θ0,θ) = EM(θ0,θ)− h

2
‖G‖0,

where the EM functional is given by

EM(θ0,θ) = Eθ0(lθ(Y ,U)|Y )

= − tr(Sy)

2σ2
+

tr(GBT
0 )

σ2
− tr(GA0G

T )

2σ2

− M

2
log σ2,

where A0 = σ2
0W

−1
0 + 1

T U
T
0 U0 and B0 = 1

T Y
TU0. In

the M-step we maximize the penalized EM functional over G
which is equivalent to minimizing

J(G) =

M∑
v=1

(
1

2
gT
v A0gv − gT

v bv,0 +
hσ2

2
‖gv‖0

)
,

where gT
v is the v-th row vector of G. We use an itera-

tive algorithm (see Algorithm 2 at the end of the paper) to

solve this optimization problem, denoting the solution by

Γ(A0,B0, σ
2, h). Optimization of the penalized EM func-

tional w.r.t. σ2 yields

σ2
1 =

1

M

[
tr(A0G

T
1 G1)− 2tr(BT

0 G1) + tr(Sy)
]
.

We say the algorithm has converged if

1− minj

( |gT
(j),kg(j),k−1|

‖g(j),k‖‖g(j),k−1‖

)
< 1 · 10−5.

The slnPCA0 algorithm is given in Algorithm 1.

Algorithm 1: The slnPCA0 algorithm

Input: Data matrix Y , r, and h
Initialization: G0 and σ2

0

while (Not converged) do
W k = GT

kGk + σ2
kIr

Uk = Y GkW
−1
k

Ak = σ2
kW

−1
k + 1

T U
T
kUk

Bk = 1
T Y

TUk

Gk+1 = Γ(Ak,Bk, σ
2
k, h)

σ2
k+1 =
1
M

[
tr(AkG

T
k+1Gk+1)− 2tr(BT

kGk+1) + tr(Sy)
]

Output: G and σ2

3.2. Model selection

We use the BIC statistic to select the number of principal com-

ponents r and the sparseness tuning parameter h.

BICr,h = −2lθ̂(Y ) +
dr,h
T

log T,

where dr,h is the number of nonzero elements of G; note that

this also depends on h. The model corresponding to the global

minimum of the BIC surface is selected.

3.3. Variance explained and ordering

We define the variance explained by the sparse noisy principal

components as

tr(QTSyQ) (2)

where Q = G(GTG+σ2Ir)
−1/2. The columns of the sparse

loading matrix G are ordered according to their contribution

in the sum (2).

4. EXAMPLES

In this section we provide two simulation examples compar-

ing slnPCA0 to the method in [4], which we will call ZHT,

using an implementation by [10]. We also provide a DNA

microarray data example. In simulation 2 and in DNA mi-

croarray data example the n >> p (gene expression array)

version of ZHT is used.

4.1. Simulation 1

We simulated T = 100 data vectors from (1) with G10×2 =
[g(1), g(2)], where g(1) =

√
200 · g̃(1)/‖g̃(1)‖, g(2) =

√
100 ·

g̃(2)/‖g̃(2)‖,

g̃(1) = [1, 1, 1, 1, 0, 0, 0, 0, 0, 0]T

g̃(2) = [0, 0, 0, 0, 1, 1, 1, 1, 0, 0]T
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angle 1 (deg) angle 2 (deg)

slnPCA0 2.15 3.10

ZHT 2.49 3.49

Table 1. Simulation 1. The angles (in degrees) between the

estimated and true loadings.

and σ2 = 10. The simulation was run 10 times. For each run

BIC was used to select the number of principal components

r and the sparseness tuning parameter h. BIC picked the cor-

rect model each time. Fig. 1 shows a sample BIC profile

versus the sparseness parameter h. The model corresponding

to the local minimum at h = 0.039 was selected. The ZHT
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Fig. 1. Simulation 1. The BIC2,h profile for slnPCA0.

method is not model based so the BIC cannot be used to se-

lect its tuning parameter. To compare we used the same r and

sparsity level as BIC selected for the slnPCA0 method. We

computed the mean angle (in degrees) between the estimated

loading vectors ĝ(1), ĝ(2) and the truth over 10 simulations.

Table 1 shows that angle is lower for the slnPCA0 method.

4.2. Simulation 2

We simulated T = 100 data vectors from the (1) with

G625×2 = [g(1), g(2)], where the loading vectors g(1) and
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Fig. 2. Simulation 2. The loading vector g(1) and g(2) de-

picted as 25× 25 images.

g(2) are depicted (as 25 × 25=625 images) in Fig. 2 and

σ2 = 5. We simulated the data 44 times and each time used

the BIC to select the tuning parameters. Fig. 3 shows a plot

of the probability of error for each of those simulations where

probability of error was defined as

PE = αPF + (1− α)(1− PD)

, where PD = Pr(decide signal|signal),
PF = Pr(decide signal|no signal), and α is the fraction of

zero loadings. For each simulation BIC was used to select the

slnPCA0 model. The model corresponding to the lowest prob-

ability of error was selected for ZHT. The figure shows that

probability of error is almost always much lower for slnPCA0.

Fig. 4 shows a sample BIC profile vs h where the model cor-

responding to h = 0.28 was selected.
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Fig. 3. Simulation 2. Probability of error vs simulation num-

ber.
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Fig. 4. Simulation 2. The BIC2,h profile for slnPCA0.

Fig. 5 shows the slnPCA0 solution for h = 0 (no penalty)

which is equal to the nPCA solution described in section 2

and the slnPCA0 solution selected by BIC. It can be seen that

BIC selects the correct degree of sparseness. Interestingly,

since the true loading vectors are correlated, the nPCA solu-

tion is not able to separate them. On the contrary the slnPCA0

solution separates them.

The ZHT method, with the degree of sparseness, and r
corresponding to minimum probability of error was used to

estimate the loadings. The angle between the loading vectors

and the truth can be seen in Table 2. Just as in simulation 1

the slnPCA0 gives lower values.
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Fig. 5. Simulation 2. The estimated loadings

angle 1 (deg) angle 2 (deg)

slnPCA0 7.6 11.7

ZHT 14.8 23.9

Table 2. Simulation 2. The angles between the estimated and

true loadings.

4.3. DNA microarray expression data

In this section we analyze DNA microarray expression data

matrix of M=6830 genes and T = 64 samples [11]. We ex-
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Fig. 6. The variance explained for the microarray expression

data.

tract the first principal component using slnPCA0 and also

the ZHT method. Fig. 6 shows the variance explained vs the

level of sparsity, the level of sparsity chosen by BIC is indi-

cated with a dot on the figure. slnPCA0 clearly explains more

variance for a given level of sparsity than ZHT.

5. CONCLUSIONS

We have developed a new sparse loading PCA method based

on an l0 penalized likelihood framework. Optimization is fa-

cilitated by a generalized EM algorithm which yields a sim-

ple thresholding procedure. A simulation study and real data

analysis show that the method outperforms the standard pro-

cedure.

Algorithm 2: Iterations for Γ(A0,B0, σ
2, h).

Input: Data matrix A0 = [Aij ], B0 = [b(1), ..., b(r)],
σ2, h.

Initialization: G0 = [g(1),0, ..., g(r),0]

while (Not converged) do
for i = 1, ..., r do

r(i),k+1 =
b(i) −

∑
j<i Aijg(j),k+1 −

∑
j>i Aijg(j),k

g(i),k+1 =
r(i),k+1

Aii
I
(

r(i),k+1�r(i),k+1

Aii
> hσ2

)

Output: G

6. REFERENCES

[1] M.O. Ulfarsson and V. Solo, “Sparse variable PCA using

geodesic steepest descent,” IEEE Transactions on Signal Pro-
cessing, vol. 56, no. 12, pp. 5823–5832, 2008.

[2] M.O. Ulfarsson and V. Solo, “Vector l0 sparse variable pca,”

IEEE Trans. Signal Proc., vol. 59, no. 5, pp. 1949–1958, 2011.

[3] I.T. Jolliffe and M. Uddin, “A modified principal component

technique based on the lasso,” J. Comput. Graphical Stat., vol.

12, no. 3, pp. 531–547, 2003.

[4] H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal compo-

nent analysis,” J. Comput. Graphical Stat., vol. 15, no. 2, pp.

265–286, 2006.

[5] A. D’Aspremont, F. Bach, and L.E. Ghaoui, “Optimal solu-

tions for sparse principal component analysis,” J. Mach. Learn.
Res., vol. 9, pp. 1269–1294, 2008.

[6] J. Huang H. Shen, “Sparse principal component analysis via

regularized low rank matrix approximation,” J. Multivariate
Anal., vol. 99, pp. 1015–1034, 2008.

[7] Y. Guan and J. Dy, “Sparse probabilistic principal component

analysis,” in AISTATS 2009.

[8] G. Schwartz, “Estimating the dimension of a model,” Ann.
Stat., vol. 6, no. 2, pp. 461–464, 1978.

[9] D.N. Lawley, “Tests of significance of the latent roots of the

covariance and correlation matrices,” Biometrica, vol. 43, pp.

128–136, 1956.

[10] K. Sjostrand, “Matlab implementation of LASSO, LARS, the

elastic net and SPCA,” 2005, Version 2.0.

[11] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning, Springer Verlag, New York, NY, 2001.

3600


