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The Complex Double Gaussian Distribution
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Abstract—We present the complex Double Gaussian distribu-
tion that describes the product of two independent, non-zero
mean, complex Gaussian random variables, a doubly-infinite
summation of terms. This distribution is useful in a wide array
of problems. We discuss its application to blind TR detection
systems by deriving the Neyman-Pearson optimal detector when
the channel is modeled as the product of two independent
complex Gaussian random variables, such as in a Time Reversal
scenario. We show that near-optimal detection performance can
be achieved with as few as 25 summation terms. Theoretical
analysis and Monte Carlo simulations illustrate our results.

Index Terms—Complex Gaussian, Complex Double Gaussian,
Detection, Time Reversal, Probability Distribution of Product of
Gaussian Variables

I. INTRODUCTION

In [1], we presented the probability distribution function

(PDF) for the product of two non-zero mean complex Gaussian

random variables. We refer to it as the complex Double
Gaussian PDF. This PDF is useful in many practical applica-

tions. The keyhole or pinhole channel model proposed in [2]

describes a system where both the transmitter and the receiver

are surrounded by multipath scattering and all communication

between them passes through a single waveguide, such as the

corner of a building. In this scenario, the channel is the product

of two complex Gaussian random variables. In time rever-

sal [3], a source first probes the channel, which is collected,

time reversed (or phase conjugated), and retransmitted back

to the original source. If this channel experiences Rayleigh

fading, then the aggregate channel response is the product

of two complex Gaussians. Finally, in many communication

systems the received signal is sent through a linear combiner

consisting built from a channel estimate generated from pilot

symbols. Under Rayleigh fading, the output of this combiner

is the product of complex Gaussian random variables. In all

three of these scenarios, and many others, the complex Double
Gaussian distribution can be a useful tool for design and

analysis.

In this paper, we present the complex Double Gaussian PDF,

which is computed via a doubly-infinite summation, whose

terms include modified Bessel functions of the first and second

kind. We also apply it to blind TR, see [4]. We use the complex
Double Gaussian distribution to design the binary hypothesis

test deriving the Neyman-Pearson optimal detector. We verify

theoretically the performance of our detector using Monte

Carlo simulations and compare its performance to an Energy

Detector.

N. O’Donoughue and J.M.F. Moura are with the Department of Electrical
and Computer Engineering, Carnegie Mellon University, 5000 Forbes Ave,
Pittsburgh, PA 15217. {nodonoug,moura}@ece.cmu.edu

N. O’Donoughue’s work was partially supported by a National Defense
Science and Engineering Graduate Fellowship.

We present the PDF for the complex Double Gaussian
distribution in Section II. The Blind TR Detection System is

described in Section III, where we also derive the optimal de-

tector. Simulation results are presented in Section IV, followed

by our conclusion in Section V.

II. DOUBLE GAUSSIAN PDF

If X ∼ CN (
νxe

jφx , σ2
x

)
(meaning that X is a Complex

Gaussian random variable with mean νxe
jφx and variance

σ2
x) and Y ∼ CN (

νye
jφy , σ2

y

)
are independent random

variables, then the product Z = XY is characterized by the

polar distribution:
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where:

α =
√
2rzkxky cos (θz − φx − φy) /σxσy (2)

kx =
νx
σx

(3)

ky =
νy
σy

. (4)

The detailed proof of (1) is exceedingly tedious. An abridged

version of the proof is presented in [1], Appendix A. The proof

begins by computing the joint distribution of the output phase

Θz and input amplitudes Rx and Ry . Then, a transformation

of variables from Rx and Ry to Rz and a dummy variable

T is conducted. Finally, the variable T is integrated out. This

integration process is extremely involved and requires the use

of several Bessel Function identities and expansions found

in [5], as well as several complicated integrations obtained

using results in [6]. If the two inputs are both zero-mean

(νx = νy = 0), then (1) reduces to [1]:

fRz,Θz (rz, θz) =
2rz

πσ2
xσ

2
y

K0

(
2rz
σxσy

)
. (5)

Comments regarding (1): We call this result the complex
Double Gaussian distribution and use the shorthand CNN to

refer to it:

Z ∼ CNN (
νxe

jφx , σ2
x; νye

jφy , σ2
y

)
. (6)

The first two moments of (1) are given by:

E[Z] =E[X]E[Y ] = νxνye
j(φx+φy) (7)

Var[Z] =Var[X]Var[Y ] = σ2
xσ

2
y. (8)
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Fig. 1. Plot of the two-dimensional PDF fRz ,Θz (rz , θz), described in (1),

for kx = 1, ky = 1/
√
2 and φx = φy = π/2.

Likewise, higher order moments of Z are obtained from the

first two moments of X and Y .

The infinite summations over n and p arise from the Rician

k-factors kx and ky , respectively. These terms express the

relative strength of the deterministic components of X and

Y . If one of kx or ky is zero, the corresponding sum across n
or p, respectively, becomes superfluous and the PDF reduces

to a single summation. If both are zero, then the summation

in (1) reduces to a single term.

We plot an example of (1) in Figure 1 for the case

where kx = 1, ky = 1/
√
2, σ2

x = 1 σ2
y = 1/2, and

φx = φy = π
2 . This plot was generated using 100 summation

terms (n = 0, . . . , 9, p = 0, . . . , 9). The plot exhibits a

cardioid shape, this is because we are plotting the polar form of

the two-dimensional PDF fRz,Θz (rz, θz). A simple conversion

to Cartesian coordinates would remove the hole that appears

at the origin.

III. BLIND TIME REVERSAL DETECTION

We consider the detection of a target in the presence of sta-

tionary random multipath scattering, this application is briefly

discussed in the recently submitted manuscript [1], but we

present here a more in-depth analysis. We will utilize a Time

Reversal detection strategy similar to the one outlined in [3],

[4] with one notable difference. In the detection system we

consider here, the Time Reversal mirror will not communicate

with the detector. Thus, the detection system must operate

without knowledge of the result of the forward transmission.

The meaning of this statement will be clarified below.

We define the frequency samples ωq , q = [0, Q− 1].
We model the target as a point target with a deterministic

response T . For the clutter, we utilize the Wise-Sense Sta-

tionary Uncorrelated Scattering (WSSUS) model for multipath

propagation [7]. WSSUS assumes that the multipath response

comes from a linear superposition of uncorrelated echoes, and

that each echo is characterized by a WSS impulse response.

From this, is follows that the clutter is drawn from a zero-mean

complex Gaussian distribution with power spectral density

(PSD) Pc(ωq). This channel model is discussed in detail in [8]

and was used in [4]. We transmit the probing signal S(ωq) and

write the response:

Y (ωq) = [T + C(ωq)]S(ωq) + V (ωq), (9)

where C(ωq) ∼ CN (0, Pc(ωq)) is the clutter response, and

V (ωq) ∼ CN (
0, σ2

v

)
represents additive noise. For simplicity,

we use a white probing signal:

S (ωq) =
√
Es/Q, (10)

for some transmit power Es. The Time Reversal probing signal

is generated using a scaled, phase-conjugated version of the

received signal Y (ωq):

STR(ωq) = kY ∗(ωq), (11)

where k is the energy normalization factor defined by:

k =

√
Es∑Q−1

q=0 |Y (ωq)|2
. (12)

We assume that k is approximately deterministic, as was

argued in [9]. The Time Reversal probing signal STR(ωq) is

distributed as a complex Gaussian:

STR(ωq) ∼ CN
(
kT ∗, k2

(
Pc(ωq)

Es

Q
+ σ2

v

))
. (13)

The signal STR(ωq) is then transmitted from the receiver back

to the source, where the received signal is:

YTR(ωq) =
(
T + C (ωq)

)
STR (ωq) + V (ωq), (14)

where C (ωq) is the clutter channel for the second transmis-

sion, and V (ωq) is the noise signal for the second transmission.

We assume that the clutter and noise signals are independent

of each other and independent from one transmission to the

next. This assumption will be valid if there is sufficient time

delay between the forward and TR transmission stages, relative

to the coherence time of the clutter channel. If we ignore the

noise term, then (14) is distributed according to the product

of independent Complex Gaussians:

YTR(ωq) ∼CNN (
μx,q, σ

2
x,q;μy,q, σ

2
y,q

)
, (15)

μx,q =T,

μy,q =kT ∗,

σ2
x,q =Pc(ωq),

σ2
y,q =k2

(
Pc(ωq)

Es

Q
+ σ2

v

)
.

At this stage, we set up the binary hypothesis test. The detec-

tors in [3] were designed to use both Y (ωq) and YTR(ωq). In

this application, however, we consider the case where Y (ωq)
is not available to the detector. In the null hypothesis, the case

where no target is present, T = 0, and YTR(ωq) is distributed

according to (5). In the alternative hypothesis, T > 0, and

YTR(ωq) is distributed according to (1). Thus:

H0 : μx,q = 0, μy,q = 0

H1 : μx,q = T, μy,q = kT ∗ (16)
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A. Likelihood Ratio Test

To compute the likelihood ratio test statistic, we utilize the

mean and variance parameters given in (15). We divide the

distribution under H1, given by (1), by the distribution under

H0, given by (5). The result is given:

	q =

Q−1∏
q=0

e−(k
2
x,q+k2

y,q)
N−1∑
n,p=0

1

n!p!

(
α

2 cos (θq)

)n+p

(
kx,q
ky,q

)n−p Kn−p

(
2rq

σx,qσy,q

)
K0

(
2rq

σx,qσy,q

) In+p (2α) , (17)

where θq = ∠YTR(ωq), rq = |YTR(ωq)|, and αq =√
2rqkx,qky,q cos (θq) /σx,qσy,q . The summations over n and

p are both carried out for the first N terms, instead of to ∞,

resulting in a total of N2 summation terms. Unless otherwise

specified, we will utilize N = 15 in our simulations. It would

be possible to construct the likelihood ratio 	 numerically,

through a Monte Carlo simulation, but that approach would

be much more computationally complex, and would not yield

the analytical representation in (17). From the likelihood ratio

	, we can construct the test [10]:

φ =

{
1 	 ≥ 	0
0 	 < 	0

, (18)

for some threshold 	0. Ideally, we would use the distribution

of the test statistic 	 to determine the appropriate threshold

	0 for some desired false alarm rate. However, its distribution

is unknown, so we must rely on Monte Carlo simulations to

determine the appropriate threshold.

IV. MONTE CARLO SIMULATIONS

To test the detector derived in Section III, we construct

a simulation scenario wherein the clutter channel follows a

Gaussian power spectral density in the band 2-4GHz, and the

target (a point target) has a constant value T = ejπ/2. We

confine our transmit power to the Es = 1, and vary the total

clutter power Ec =
∑Q−1

q=0 Pc(ωq). We vary the number of

frequency samples Q and conduct MC = 106 Monte Carlo

trials for each scenario.

Using these Monte Carlo trials, we set the probability of

false alarm to (PFA) = 0.01, determine the appropriate

threshold from a noise-only simulation, and then use that

threshold to compute the probability of detection (PD) for the

likelihood ratio test given in (18) as we vary the number of

frequencies Q and the signal-to-noise ratio SNR. The signal-

to-noise ratio is defined:

SNRdB = 10 log10

(
Es |T |2
Qσ2

v

)
. (19)

We also define the signal-to-clutter ratio SCRdB:

SCRdB = 10 log10

(
Q |T |2∑Q−1

q=0 Pc(ωq)

)
. (20)
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Fig. 2. Plot of the detector performance for the Likelihood Ratio Test (LRT)
detailed in (17) and the Energy Detector (ED) in (21) when the false alarm
rate is fixed at PFA = 0.01 and Q = 10 frequency samples.
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Fig. 3. Plot of the detector performance for the Likelihood Ratio Test (LRT)
detailed in (17) and the Energy Detector (ED) in (21) for various values of
Q when SCRdB = 0 and SNRdB = 0.

For comparison, we also computed the receiver operating

characteristics of an energy detector:

	ED =

Q−1∑
q=0

|YTR(ωq)|2 . (21)

For the first test, we compare the likelihood ratio test (LRT)

that we derived in (17) to the Energy Detector in (21) with

varying SCR. We plot the results in Figure 2, which depicts

Probability of Detection for each scenario against SNRdB. We

consider two scenarios: strong clutter (SCRdB = 0) and weak

clutter (SCRdB = 5). In the strong clutter case, the ED fails

to distinguish the target, while the LRT achieves PD > .9
at high SNR. In the weak clutter case, the ED improves and
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Fig. 4. Plot of the detector performance for the Likelihood Ratio Test (LRT)
detailed in (17) and the Energy Detector (ED) in (21) for various summation
lengths (N) when the false alarm rate is fixed at PFA = 0.01, Q = 10
frequency samples, and SCRdB = 0.

performs similarly to the LRT detector in strong clutter. The

LRT improves as well, outpacing the ED. From this test, we

can see that the LRT has a distinct SCR advantage over the

ED, since it utilizes the distribution of YTR (ωq).
For the second test, we set the signal-to-clutter ratio to

a fixed value of SCRdB = 0 and the signal-to-noise ratio

to a fixed value of SNRdB = 0. We allow the number of

frequencies Q to take on the values Q = 10, 20, 50, and 100.

The results are plotted in Figure 3, on a log-log scale with

probability of detection (PD) ranging from 0.1 to 1 and

probability of false alarm (PFA) ranging from 10−3 to 1.

From this plot, we can see that the LRT performance increases

notably with increasing Q, while the ED improves marginally

by comparison. For example, if we set the false alarm rate

to PFA = 10−2, the ED will achieve ≈ 15% detection with

Q = 10 and 20% detection with Q = 100, a 33% increase.

The LRT, however, achieves ≈ 50% detection with Q = 10
and almost 80% with Q = 100, a 60% increase. Since the LRT

is leveraging more information about the channel and target,

it stands to benefit more from a larger sampling space.

A. Effect of Summation Length

The PDF for the complex Double Gaussian distribution is

a doubly-infinite summation. As a result, the likelihood ratio

test statistic presented in (17) also contains a doubly-infinite

summation. In order to compute the PDF, this summation must

be truncated at some point N . In this test, we look at how the

choice of N affects detector performance. In Figure 4, we

show the detector performance (PD vs. SNRdB) for various

summation lengths N , when SCRdB = 0 and Q = 10. We

also plot the performance curve for the ED in this scenario, as

a benchmark. We can see from the results that the detector

does well with just a single term, except for a spurious

result at SNRdB = 4, which can be attributed to numerical

instability of the algorithm when only one term is used. A

modest increase to N = 5 (25 summation terms) removes

the numerical instability but performs only slightly better, and

moving to N = 10 (100 summation terms) or N = 15 (225

summation terms) yields almost no improvement. Thus, for

this test scenario, only 25 summation terms are necessary for

near-optimal performance.

V. DISCUSSION AND CONCLUSION

We present the complex Double Gaussian distribution, a

recently derived result. In this paper, we show the usefulness

of this distribution by applying it to the problem of a Blind

TR Detection scheme. We use this distribution to characterize

the aggregate channel response and derive the optimal detector

in a Neyman-Pearson sense. We verify our results with Monte

Carlo simulations and compare them to an energy detector.

We also show that near-optimal detection performance can be

achieved with as few as 25 terms from the doubly infinite

summation that makes up the likelihood ratio test statistic. In

addition to the application that we present here, an important

problem that can benefit from the complex Double Gaussian
distribution is error analysis in communication systems that

rely on a linear combiner, such as M-ary Phase Shift Keying

(M-PSK) systems [11]. The output of the linear combiner

can be characterized as the product of two complex Gaussian

random variables. This allows the complex Double Gaussian
distribution to be used for analysis, such as computing the

Symbol Error Probability (SEP). This problem was considered

in detail in [1].
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