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ABSTRACT

In this work a novel approach for representing pulse width
modulated (PWM) signals is introduced. PWM signals are
usually represented according to the way they are generated,
that is, by manipulating the sign of the comparison between
the input signal and a reference wave. On the contrary, the
new representation consists of a warped Fourier series, that
is, a series of properly phase-modulated sinusoids, such that
the zero-crossings of each warped harmonic comprehends
the zero-crossing of the PWM signal. Yet, in contrast with
the original signal, the spectrum of the resulting components
decays exponentially, so they can be sampled at reasonable
low rate while maintaining aliasing negligible. Being band-
limited and keeping zero-crossings unaltered, this represen-
tation is suitable for computationally efficient PWM signal
generation.

Index Terms— Pulse Width Modulation, Time Warping

1. INTRODUCTION

Pulse Width Modulated (PWM) signals consist of a train of
pulses such that the information in the modulating signal is
represented by the pulses width or equivalently by the result-
ing zero-crossing instants [1]. When the PWM signal is prop-
erly generated, the modulating signal can be accurately re-
stored by simple low-pass filtering. Historically, this modula-
tion has been mostly employed in power control for switching
power converters and related applications, and, more recently,
it has been effectively applied in class-D amplifiers in order to
overcome the disadvantages of linear amplifiers and to exploit
the efficiency of non-linear ones.

Warping techniques are ubiquitous in signal processing:
for instance, frequency warping deals with the possibility
of generalizing time-frequency transformations while time
warping is generally employed in image or voice processing
for feature extraction and pattern recognition [2].

We plow here to exploit warping techniques to give an
alternative representation of PWM signals. In fact, although
there are some different ways to represent and generate PWM
signals, the deformation of the time axis, that is the time warp-
ing, has not been explored yet. This kind of representation

carries some advantages which will be illustrated throughout
the paper. The general idea is to consider a periodic square
wave with constant 50% cycle and apply a deformation of its
time axis so that is becomes identical to what is obtained by
encoding a signal by classical PWM methods, i.e. by compar-
ing it with periodic triangle wave. Probably the most straight-
forward way of finding a suitable time warping is to consider a
piecewise linear function where each piece is identified by the
zero-crossings of the PWM signal. The resulting time warp-
ing function can then be used to describe the instantaneous
phase deviation to be applied to a periodic square wave to re-
produce the same PWM signal. Regrettably, such an intuitive
approach yields a phase modulation with an heavy tailed spec-
trum that, for example, can be hardly reproduced by discrete-
time digital means.

More sophisticated warping should be taken into account
and this is precisely the task of the following Sections that,
after an overview of PWM signals (Section 2) develop the
general warping model (3) and propose some feasible warp-
ing functions (4).

2. PWM IN BRIEF

PWM is commonly presented through the circuit by which
the modulated signal is obtained. A continuous-time band-
limited signal s(t), with normalized Nyquist frequency equal
to 1 and dynamic range in (−1, 1), is compared to a trian-
gle wave ξ(fct) whose normalized first harmonic is at a fre-
quency fc > 1/2, so that it is entirely out of the signal band.
The triangle wave is given by:

ξ(t) =

{
−1 + 4(t− k) k ≤ t < k + 1/2
−1 − 4(t− k) k − 1/2 ≤ t < k

, k ∈ Z.

Such a PWM signal is referred to as double-edge, since the
modulating signal is sampled twice per reference wave pe-
riod. The difference s(t) − ξ(fct) is thresholded to symmet-
rical positive and negative levels equal to +1 and −1 respec-
tively:

φs,fc
(t) = sign(s(t) − ξ(fct)). (1)

The obtained modulated signal contains the input signal plus
an infinite number of non-linear contributions whose spectra
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are centered on the triangle wave harmonics [3].
Two simple examples of PWM generation are shown in

Fig. 1. In the first case fc = 1, so that triangle wave is intu-
itively able to sample enough information from s(t). In the
second case fc = 1/8, thus within the signal band, the tran-
sitions of φs,fc

are not able to catch the variations of s(t).
Moreover, around t = 26, s(t) is sampled three times on the
same linear piece, causing an increase of average transition
frequency. In the rest of the paper we will always assume
that fc is large enough to guarantee that the average transition
frequency is equal to fc itself.

3. PWM REPRESENTATION THROUGH TIME
WARPING

The basic idea behind the representation of PWM signal
through a time warping procedure is first to consider an un-
modulated train of pulses

φ0,fc
(t) = sign(−ξ(fct))

=
∑
k∈Z

2rect(2(t− k)) − 1

=
4

π

∞∑
m=0

(−1)m

2m+ 1
cos(2π(2m+ 1)fct)

where rect is the rectangular function. To this we add a
signal-dependent time shift δs,fc

(t) on the cosines to obtain

φs,fc
(t) = φ0,fc

(t+ δs,fc
(t))

=
4

π

∞∑
m=0

(−1)m

2m+ 1
cos(2π(2m+ 1)fc(t+ δs,fc

(t))).

By doing so, we can assure that the PWM signal shares its
zero-crossing instants with all the terms of the Fourier series.

To find the expression of the warping function t+δs,fc
(t),

let us start by recalling that, according to warping theory, a
warping function has to defined such that its derivative is al-
ways positive. If this condition is satisfied, the zero-crossings
of the unmodulated PWM signal φ0,fc

are shifted one with
respect to the other while their order is kept unaltered. The
zero-crossings of the unmodulated signal are given by

1

fc

(
k ±

1

4

)
k ∈ Z

so we get that in all time instants t for which the modulated
PWM signal has a zero-crossing, s(t) has to be equal to ξ(t),
which turns in the following constraint for k ∈ Z

fc(t+ δs,fc
(t)) = k ±

1

4
⇒ s(t) = −1 ± 4(fct− k). (2)

As anticipated in the Introduction, a time shift that satis-
fies the previous requirement can be obtained from the sets
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Fig. 1: A case of correctly generated PWM signal (upper figure) and under-
sampled PWM signal (lower figure), where also an unwanted oversampling
occurs around t = 26.

of trailing zero-crossingsαk and of leading zero-crossings βk

such that

s(αk) = −1 + 4(fcαk − k)

s(βk) = −1 − 4(fcβk − k)

All we have to do is to linearly interconnect the samples s(αk)
and −s(βk)

δs,fc
(t) =

⎧⎨
⎩

1
4fc

[
s(αk)+s(βk)

αk−βk

(t− βk) − s(βk)
]

1
4fc

[
s(αk)+s(βk+1)

αk−βk+1
(t− αk) + s(αk)

] (3)

for βk ≤ t ≤ αk and αk ≤ t ≤ βk+1 respectively. This
definition is not a good choice for the following reasons:

• it is desirable that each warped cosine has a fast de-
caying spectrum, which means that a smooth warping
function should be employed;

• the definition of the warping function should not re-
quire to know a-priori the zero-crossings of the PWM
signal;

• the warping function should continuously depend on
s(t) rather than being piecewise defined.

Warping functions obeying the above specifications are
good ones and, in general, may be thought of as smooth in-
terpolations of the piecewise-linear example given above that
do not rely on the a-priori knowledge of zero-crossings.

4. WARPING FUNCTIONS FOR PWM

In this Section we build some good warping functions satisfy-
ing the requirements which have been previously listed start-
ing from some general observations. According to the linear
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Fig. 2: Time shift δs,fc
, as defined in eq. (4), for fc = 1, plotted for each

pair (s, t) in the domain (−1, 1) × (−1/2, 1/2). For |s| > 2/π some
regions do not satisfy the specifications since the derivative along t is smaller
than −1.

piecewise function (3), the time shift has to oscillate between
s(t) and −s(t) with a proper scaling and pass by s(αk) and
−s(βk). As a starting point, we consider a generic odd oscil-
lating function such that it is equal to 0 for k ∈ Z. In fact,
the instants t = k/fc cannot represent zero-crossings, since
leading edges αk range in (k/fc, (k+1/2)/fc) while trailing
edges βk range in ((k − 1/2)/fc, k/fc). The bounds of the
interval are never reached since s ∈ (−1, 1). Moreover, the
oscillating function has to be monotonic in s, so that the larger
is s the larger is the time shift. Finally, as the time shift in-
creases, the oscillating function has to warp itself making the
transitions instants move in a proportional way with respect
to s.

Our first proposal to meet all the above considerations is

δs,fc
(t) = −

1

4fc

s(t) sin(2πfc(t+ δs,fc
(t))). (4)

It is quite easy to verify that this function satisfy the specifi-
cation, in fact, by considering fc(t+ δs,fc

(t)) = k± 1/4, for
the left side we get

δs,fc
(t) =

1

fc

(k ± 1/4) − t

while for the right side we have

−
1

4fc

s(t) sin(2πfc(t+ δs,fc
(t))) = ∓

1

4fc

s(t)

which, combined together, give s(t) = ξ(fct).
The fact that the time shift has been defined through a re-

cursion poses little or no problem at all since it can be consid-
ered as a nonlinear scalar equation yielding separately for ev-
ery t that can be effectively solved by numerical means since
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Fig. 3: First warped harmonic according to time shift in eq. (4), for fc = 1.
In the regions where δs,fc

does not satisfy the specification, the cosine is not
correctly warped. The function is 0 on the line s(t) = ξ(t) (dashed line).
For s = 0 (solid line) the function gives an unwarped cosine.

the needed derivative are known. For example, one may em-
ploy an iterative Newton algorithm and repeatedly compute

εk = −
1

4fc

s sin(2πfc(t+ δk)) − δk

ε′k = −
π

2
s cos(2πfc(t+ δk)) − 1

δk+1 = δk −
εk

ε′k

till convergence. What results from this computation needs to
be a warping function, i.e., its derivative must be always pos-
itive or, equivalently, the minimum of the derivative of δs,fc

must be larger than −1. The derivative δ′s,fc
results

δ′s,fc
(t) =

ψ(s(t), s′(t), δ(t))

1 + π
2 s(t) cos(2πfc(t+ δs,fc

))

where ψ(s(t), s′(t), δ(t)) is a properly defined function of s,
s′ and δ. A complete study of this function for every (s, t) pair
in the domain (−1, 1) × (−1/2, 1/2) is not straightforward,
but it is evident that the denominator can be equal to 0 when
|s| = 2/π, thus potentially generating values smaller than
−1. In fact, as illustrated in Fig. 2 and Fig. 3, the time shift
(4) result to be valid only for |s| < 2/π.

Despite the above mentioned limitations, the time shift
(4) has an interesting feature. By properly representing the
warped harmonics in Taylor series, their spectrum can be ob-
tained as a series of non-linear function of s shifted in fre-
quency on multiples of fc. For this warping function, the
only warped harmonic having a baseband component is the
first one, i.e. 4/π cos(2πfc(t + δs,fc

(t))), and this compo-
nent is just s(t).

In order to overcome the limitations of function (4), we
define a new time shift by exploiting the warping function
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Fig. 4: Time shift δs,fc
, as defined in eq. (5), for fc = 1, plotted for each pair

(s, t) in the domain (−1, 1) × (−1/2, 1/2). Unlike the time shift plotted
in Fig. 2, this function give rise to a valid warping function on the entire
domain.

employed in the Laguerre transform. Basically we start con-
sidering that

1

π
arctan(ν tan(πt)) ν ∈ (0,∞)

represents an antisymmetric warping function on the interval
[−1/2, 1/2] depending on the positive parameter ν: when ν is
equal to 1 the warping function is simply a line, which means
no warping, when ν tends to 0 the warping function tends to
the round(t), while when ν tends to ∞ the warping function
tends to the round(t− 1/2)+1/2. This means that the entire
domains [0, 1/2]× [0, 1/2] and [−1/2, 0]× [−1/2, 0] are cov-
ered by this set of functions and any correspondence between
s and t can be matched. Hence, the parameter ν has to be set
as a function of s such that the condition (2) for obtaining a
feasible warping function is satisfied. By some calculations
we get

ν =
1

tan(π(s+ 1)/4)

so that the time shift can be define as

δs,fc
(t) =

1

πfc

arctan

(
tan(πfct)

tan(π(s(t) + 1)/4)

)
− t

which can be rewritten in the following way

δs,fc
(t) =

1

πfc

arctan

(
λ(s(t)) sin(2πfct)

1 − λ(s(t)) cos(2πfct)

)
(5)

where λ(s) is given by

λ(s) =
1 − tan(π(s + 1)/4)

1 + tan(π(s + 1)/4)
.

Unlike the previous case, it is not necessary to verify that
δ′s,fc

> −1 since we started from a class of warping function
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Fig. 5: First warped harmonic according to time shift in eq. (5), for fc =
1. Being (5) a valid time shift, the cosine is warped correctly on the entire
domain. The curve where the surface is equal to 0 (dashed line) is the line
s(t) = ξ(t). For s = 0 the function gives an unwarped cosine.

which is widely known and employed. The newly defined
δs,fc

is plotted in Fig. 4, while the first warped harmonic is
represented in Fig. 5.

As a general remark, note that both time shifts 4 and (5)
can be computed without the knowledge of the zero-crossings
of the PWM signal to be modeled. Notwithstanding this,
the zero-crossings of each of the resulting harmonics is the
same as the final signal. Since the spectrum of each of these
harmonics decays exponentially, samples taken, for example,
from the first of them, can be effectively used as a discrete
time representation of the PWM signals. This could be useful
for both signal representation and generation.

5. CONCLUSION

An innovative methodology based on time warping for build-
ing and representing PWM signals has been explored. We
introduced a decomposition in warped harmonics having the
same zero-crossings as the PWM signal and fast decaying
spectra, such that they can be sampled and used for discrete-
time representation and building of PWM signals without
computing its zero-crossings. Two remarkable examples of
feasible warping function, based on a recursive warping and
on Laguerre warping respectively, have been presented.
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