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ABSTRACT

The optimal homotopy filter is a nonlinear filtering approximation
which seeks an optimal parameterisation for the posterior. The
search for an optimal parameterisation is performed by constructing
a homotopy between the prior and posterior and solving the result-
ing ordinary differential equation. Here the optimal homotopy filter
is applied to the problem of bearings-only tracking. A simulation
analysis shows that the performance of the optimal homotopy filter
compares favourably to established algorithms.

Index Terms— Nonlinear filtering; Bayesian estimation; bearings-
only tracking;

1. INTRODUCTION

The key quantity in nonlinear filtering is the posterior density from
which posterior statistics of interest can be computed. Of particu-
lar interest in point estimation is the posterior mean since this is the
minimum mean square error estimator. It is only rarely possible to
compute the posterior density exactly. A well-known example where
exact computation is possible is when both the dynamic and mea-
surement equations are linear and Gaussian. In this case the posterior
is Gaussian and can be computed using the Kalman filter (KF). More
generally, for non-Gaussian/nonlinear dynamic and/or measurement
equations the posterior is usually not available in closed-form and
must be approximated.

A common method is to adopt a Gaussian approximation to the
posterior with the mean and covariance matrix computed by an ap-
proximation of the KF recursion. There are many variants of this ap-
proach including the extended KF (EKF) [1] and the unscented KF
(UKF) [2]. These algorithms have the desirable property of compu-
tational simplicity but are not suitable for all problems. Sequential
Monte Carlo methods, or particle filters (PFs), are of more general
applicability. A PF approximates the posterior by a random sample,
usually drawn from a suitable importance density [3]. In principle,
PFs can be used to provide accurate approximation of the posterior
in a large class of problems. However, in practice sufficiently accu-
rate results often require a prohibitively large sample size, even with
sophisticated sampling strategies.

The approach to nonlinear filtering taken here is to seek an op-
timal approximation, in some sense, to the posterior from within a
certain class of distributions. The posterior is represented by a fi-
nite number of parameters which are updated as measurements are
acquired by defining a homotopy between the prior and the poste-
rior, i.e., a continuous transformation from the prior to the posterior
as a scalar parameter is varied between 0 and 1. The parameters of
the posterior approximation are then found by solving an ordinary
differential equation (ODE). This idea, which we refer to as optimal
homotopy, has previously been proposed in [4, 5]. Closely related

to optimal homotopy is the idea of particle flow proposed in [6]. As
in a PF, particle flow filters represent the posterior by a collection of
points. However, instead of random sampling, particle flow methods
construct an ODE to adjust the location of each point. The particle
flow methods are therefore similar in spirit to optimal homotopy al-
though the principles used to construct the ODEs are quite different
for the two methods.

While promising, the performance benefits of optimal homotopy
have not been established as it has not yet been implemented as a
filtering recursion. The main contribution of this paper is the ap-
plication of optimal homotopy to the problem of tracking an object
moving in two dimensions using bearings measurements. An inter-
esting property of this nonlinear filtering problem is that full observ-
ability of the state is subject to the observer motion. For example,
full observability of the state of an object moving with constant ve-
locity requires the observer to perform a manoeuvre. The main im-
pediments to the application of optimal homotopy to bearings-only
tracking (BOT) are the solution of the ODE describing the evolu-
tion of the parameters of the posterior density approximation and
the need to evaluate several intractable integrals. Several approaches
to these problems are developed and their performances are analysed
and compared with existing algorithms.

The paper is organised as follows. The optimal homotopy filter
is described in Section 2 and applied to BOT in Section 3. A sim-
ulation analysis, including comparisons with existing algorithms, is
given in Section 4.

2. THE OPTIMAL HOMOTOPY FILTER

In this section the general idea of optimal homotopy is reviewed.
We consider a stochastic dynamic system with state vector xk ∈ R

c

which evolves as
xk|xk−1 ∼ v(·|xk−1) (1)

where v(·|·) is the transition density. The state is observed through
measurements yk ∈ R

d generated according to

yk|xk ∼ g(·|xk) (2)

Let πk(·) denote the posterior density of the state at time k, i.e.,
the density of xk conditional on the measurements y1, . . . , yk. The
posterior can be computed recursively using Bayes’ rule:

πk(xk) ∝ g(yk|xk)�k(xk) (3)

where �k(·) is the prior density,

�k(xk) =

Z
v(xk|xk−1)πk−1(xk−1) dxk−1 (4)
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Eq. (3) is commonly referred to as the correction, or update, step
while (4) is usually called the prediction step. The object of nonlin-
ear filtering is to accurately approximate the recursion consisting of
both the prediction and correction steps.

Let f(·; θ) denote a family of densities parameterised by the r-
dimensional vector θ. It is desired to select θ so that f(·; θ) approx-
imates the posterior as closely as possible. The optimal homotopy
filter (OHF) focuses on the correction step (3), i.e., assuming a pa-
rameterisation for the prior is available, the OHF seeks an optimal
parameterisation for the posterior. The motivation for the focus on
the correction step is that this part of the recursion is potentially a
much greater source of approximation error than the prediction step
[6, 7].

Let f(·; θk|k−1) denote the OHF approximation to the prior. Re-
placing the true prior in (3) with the OHF approximation gives the
unnormalised posterior density approximation

π̃k(xk) = g(yk|xk)f(xk; θk|k−1) (5)

Note that π̃k(·) will not, in general, belong to the same class of den-
sities as the prior approximation f(·; θk|k−1), i.e., there is no θ such
that π̃k(x) ∝ f(x; θ). Instead we select a value of θ for which
f(·; θ) matches π̃k(·) as closely as possible. Let J(·, ·) denote a
functional, such as the Kullback-Leibler divergence (KLD) or the in-
tegrated squared difference, which measures the difference between
two densities. Then, the OHF approximates the posterior density at
time k by f(·; θk|k) where

θk|k = argmin
θ

J(π̃k(·), f(·; θ)) (6)

The optimisation (6) is difficult to perform in general. The OHF
solves this difficulty by constructing a homotopy between the prior
approximation f(·; θk|k−1) and the unnormalised posterior approx-
imation π̃k(·). The particular homotopy used here is as follows, for
0 ≤ λ ≤ 1,

π̃k(xk; λ) = g(yk|xk)λf(xk; θk|k−1) (7)

Let
θk(λ) = argmin

θ

J(π̃k(·; λ), f(·; θ)) (8)

Note that θk(0) = θk|k−1 while θk(1) = θk|k is the desired so-
lution of (6). It will be convenient to denote the criterion for the
difference between π̃k(·; λ) and f(·; θ) as J(λ, θ). We require that

∇θJ(λ, θ)|
θ=θk(λ) = 0 (9)

where ∇θ = [∂/∂θ1, . . . , ∂/∂θr]
′. It follows from (9) that

∇θJ(λ, θ)|
θ=θk(λ) remains constant as λ varies between 0 and

1. Therefore, differentiating the LHS of (9) with respect to λ gives

H(λ, θk)
dθk(λ)

dλ
+ d(λ,θk(λ)) = 0 (10)

where H(λ, θk(λ)) = ∇θ∇
′
θJ(λ, θ)|

θ=θk(λ) and

d(λ, θk(λ)) = ∇λ∇θJ(λ, θ)|θ=θk(λ) (11)

This leads to the following ODE for the parameter vector:

dθk(λ)

dλ
= −H(λ, θk(λ))−1

d(λ, θk(λ)) (12)

with initial condition θk(0) = θk|k−1. Solution of the first-order
ODE (12) provides the optimal parameterisation of the posterior at
time k. We consider two approximate ways of solving (12).

The first method of approximating (12) is a simple Euler
scheme. Let 0 = λ0 < λ1 < · · · < λm = 1. Then, for
i = 0, . . . , m − 1, we obtain the homotopy difference equation,
referred to by the acronym HΔE in [5], as

θk(λi+1) = θk(λi) − si+1H(λi, θk(λi))
−1

d(λi, θk(λi)) (13)

where si = λi − λi−1. The solution (13) becomes exact as the step
sizes si → 0. However, numerical implementation of (13) can be
quite difficult, as will be seen in Section 3 where we consider the
application of the OHF to BOT. The second, simpler way of approx-
imately solving (12) is to replace π̃k(·; λ) with, for λi ≤ λ ≤ λi+1,

π̌k,i(xk; λ) = g(yk; xk)λ−λif(xk; θk(λi)) (14)

Let J̌(λ, θ) = J(π̌k,i(·; λ), f(·; θ)) and

Ȟ(λ,θk(λ)) = ∇θ∇
′
θ J̌(λ, θ)

˛̨
θ=θk(λ)

, (15)

ď(λ,θk(λ)) = ∇λ∇θ J̌(λ, θ)|θ=θk(λ) (16)

Then the approximate HΔE (AHΔE) is

θk(λi+1) = θk(λi) − si+1Ȟ(λi, θk(λi))
−1

ď(λi, θk(λi)) (17)

Unlike the HΔE of (13), the AHΔE (17) does not become an ex-
act solution of (12) as the step sizes si → 0 because the densities
(5) and (14) are generally not equal. However, the AHΔE is often
much simpler to implement than the HΔE. This is the case for the
application of the OHF to BOT presented in the following section.

3. APPLICATION OF OPTIMAL HOMOTOPY TO
BEARINGS-ONLY TRACKING

In BOT the state is given by xk = [xk, yk, ẋk, ẏk]′ ∈ R
4 where

(xk, yk) is the object position in Cartesian coordinates and the dot
notation indicates differentiation with respect to time. The motion
model for the object includes random perturbations in velocity to
model small object manoeuvres. This results in the dynamic model

v(xk|xk−1) = N(xk; F xk−1, Q) (18)

where N(·; μ,Σ) is the Gaussian density with mean μ and covari-
ance matrix Σ and

F =

»
1 T
0 1

–
⊗ I2 (19)

Q = q

»
T 3/3 T 2/2
T 2/2 T

–
⊗ I2 (20)

In (19) and (20), q > 0 is the process noise intensity, T is the mea-
surement sampling period, ⊗ is the Kronecker product and Im is the
m × m identity matrix.

At the kth sampling instant, a measurement yk of the object
bearing is made from an observer located at ρk = (ξk, ζk) in Carte-
sian coordinates. The measurement satisfies

g(yk|xk) = N(yk; h(xk, ρk), σ2) (21)

where

h(xk, ρk) = arctan

„
yk − ζk

xk − ξk

«
(22)

The first step in the development of an OHF for BOT is to choose
a parameterisation. We use a Gaussian distribution due to its sim-
plicity and because it is capable of providing a reasonably accurate
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approximation to the true posterior. Another benefit of using a Gaus-
sian approximation to the posterior is that the prediction step (4) can
be performed in closed-form for the transition density (18).

Since the measurement depends only on the object position, the
homotopy need only be performed over the position elements of the
object state. Thus given a Gaussian approximation to the prior, we
solve the homotopy differential equation (12), or rather one of the
approximate difference equations (13) or (17), to find an optimal
parameterisation for the posterior of the position elements. Some
simple manipulations can then be used to find the joint posterior for
the entire object state. The homotopy parameter vector θ, which
represents the Gaussian approximation to the posterior of the object
position, is then composed of r = 5 elements: the two position
means and variances and the covariance between the positions. The
position elements of the state vector are collected into pk.

The second step is to choose a criterion for measuring the dif-
ference between the posterior and the parameterised approximation.
We use the KLD which, for densities f1(·) and f2(·), is defined as

J(f1(·), f2(·)) =

Z
log

„
f1(p)

f2(p)

«
f1(p) dp (23)

Although we would like to measure the difference between the pos-
terior and the parameterised approximation only the unnormalised
posterior (7) is available. An important property of the KLD is that
the use of the unnormalised posterior does not affect the selection
of an optimal parameterisation. To see this, let f1(p) = πk(p) =
cπ̃k(p) where c is a normalisation factor and f2(p) = f(p; θ). Sub-
stituting into (23) gives

J(πk(·), f(·; θ)) = log(c) + cJ(π̃k(·), f(·; θ)) (24)

It can be seen from (24) that the same value of θ which minimises
J(π̃k(·), f(·; θ)) also minimises J(πk(·), f(·; θ)). The need for
a criterion which can properly handle comparison with an unnor-
malised posterior has not been recognised previously.

The key difficulty now is evaluating the gradient matrices and
vectors which appear in the difference equations (13) and (17). We
consider the quantities required for the HΔE (13) first. The Hessian
matrix is

H(λ, θk(λ)) =

Z »
∇θ log(f(p; θ))∇θ′ log(f(p; θ))

−
∇θ∇θ′f(p; θ)

f(p; θ)

–˛̨
˛̨
θ=θk(λ)

π̃k(p; λ) dp (25)

d(λ, θk(λ)) =

Z
∇θ log(f(p; θ))

˛̨
˛
θ=θk(λ)

× log(g(yk|p))π̃k(p; λ) dp (26)

The exact form of the derivatives has been omitted for the sake of
brevity. Neither of the integrals (25), (26) can be evaluated in closed
form so approximations are required. After investigation of numer-
ous methods, including Monte Carlo approximations and Taylor se-
ries expansions, we found that a change of variables to polar coor-
dinates followed by a grid approximation produces reasonably accu-
rate approximation with moderate computational expense.

For the AHΔE (17), the required quantities are, for λi ≤ λ ≤

λi+1,

Ȟ(λ,θk(λ)) =

Z »
∇θ log(f(p; θ))∇θ′ log(f(p; θ))

−
∇θ∇θ′f(p; θ)

f(p; θ)

–˛̨
˛̨
θ=θk(λ)

f(p; θk(λi)) dp (27)

ď(λ,θk(λ)) =

Z
∇θ log(f(p; θ))

˛̨
˛
θ=θk(λ)

× log(g(yk|p))f(p; θk(λi)) dp (28)

Eq. (27) can be evaluated in closed-form. This is an important ben-
efit of the AHΔE compared to the HΔE. Also, although (28) is in-
tractable, it has a simpler form than the corresponding equation for
the HΔE. The same approximation technique used for (25) and (26)
is used for (28).

4. SIMULATION RESULTS

The simulation scenario used to assess the performance of the OHF
is shown in Fig. 1. In this scenario the object begins at a range
of 5000 m and bearing 80◦. The object initially moves with speed
123.5 m/s and heading -130◦. After that the object state evolves as
in (18) with process noise intensity q = 0.01. The observer starts at
the origin of the coordinate frame and moves with a constant speed
of 154 m/s. The initial heading is -45◦. Between the 13th and 17th
sampling instants the the observer executes a coordinated turn with
turn rate 30◦/s. It is only after this manoeuvre that the object state
becomes fully observable. The sampling period is T = 1 s.

0 1000 2000 3000 4000 5000
−2000

−1500

−1000

−500

0

500

1000

x−position

y−
po

si
tio

n

Fig. 1. Simulation scenario: the solid line is the observer trajectory
and the dashed line is the nominal object trajectory. Crosses indicate
the starting positions and solid circles indicate sampling instants.

The OHF is implemented with both the HΔE and AHΔE. The
former is referred to as simply the OHF while the latter is called the
approximate OHF (AOHF). Comparisons are performed with two
benchmark existing algorithms. The first is the UKF of [2] imple-
mented in log polar coordinates (LPC) [8]. The UKF-LPC is re-
garded as one of the most accurate Gaussian approximations. The
second algorithm is a PF with the importance density a linearised
approximation to the optimal importance density [3]. This is a rea-
sonably sophisticated PF which attempts to use measurement infor-
mation to direct particles efficiently. The PF is implemented with a
sample size of 100 000.

The algorithms are initialised using the first measurement and
prior information about the range, speed and heading of the ob-
ject. Specifically, the prior range distribution is N(8000, 35002),
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the prior speed distribution is N(150, 502) and the prior heading
distribution is, in radians, N(−5π/9, π2/12). Note that the prior
distributions are not particularly informative.

4.1. Demonstration of the OHF

Before comparing the algorithms’ performances we demonstrate the
operation of the OHF. We consider the 17th sampling instant because
the measurement received at the end of the observer manoeuvre re-
sults in a dramatic increase in information. This greatly increases
tracking accuracy but is challenging for filtering approximations.
Fig. 2 shows the error ellipses of the optimal parameterisation found
by the OHF for λ = i/4, i = 0, . . . , 4 as well as the object posi-
tion. The OHF seems to perform well in this instance with the error
ellipses gradually concentrating around the true object position as λ
increases.
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Fig. 2. Demonstration of the OHF: error ellipses for the optimal
parameterisation at the 17th sampling instant for λ = 0 (magenta),
1/4 (blue), 1/2 (red), 3/4 (green) and 1 (black). The true object
position is indicated by a cross.

4.2. Performance analysis

Performance statistics for the various algorithms are found by av-
eraging over 500 realisations of the simulation scenario. The RMS
position errors are plotted in Fig. 3. The best performance by a
significant margin, in terms of final tracking error, is achieved by
the OHF. Both the AOHF and OHF are noticeably superior to the
UKF-LPC and the PF in this example. It may be expected that the
OHF would outperform the AOHF since it attempts an exact solution
to the homotopy differential equation (12). The situation is compli-
cated somewhat by the fact that approximation of the Hessian matrix
(25) and gradient vector (26) is more difficult in the OHF compared
to the AOHF. Indeed the Hessian is available in closed-form for the
AOHF. Thus, it is possible that larger errors introduced in the ap-
proximation of (25) and (26) contribute to the slightly slower reduc-
tion in error of the OHF at the onset of the observer manoeuvre. The
AOHF has about a quarter of the computational expense of the OHF.
Both algorithms are much more expensive than the UKF-LPC but
considerably less expensive than the PF for the sample size of 100
000 used here.

5. CONCLUSIONS

The optimal homotopy filter was applied to the challenging problem
of bearings-only tracking. Two variants of the optimal homotopy
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Fig. 3. RMS position errors for the UKF-LPC (black), PF (green),
OHF (blue) and AOHF (red) plotted against time.

filter were implemented and shown to produce much better perfor-
mance in a simulation example than existing algorithms. Impor-
tantly, the proposed filters achieve this high level of performance
with moderate computational expense. Although the strong results
obtained here for the optimal homotopy filter are encouraging, gen-
eral application of the idea seems problematic. In bearings-only
tracking the optimal homotopy can be performed with a vector of
five parameters. Even with this relatively small parameter vector the
optimal homotopy is difficult to implement, mainly because of the
need to evaluate the integrals which define the flow of the parameter
values. This issue would be exacerbated in problems where approx-
imation of the posterior requires a larger number of parameters.
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