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ABSTRACT

Blind Volterra system linearization is a challenging problem

with a variety of applications where nonlinearities are present

and training signals are not. This paper focuses on digital

post compensation of nonlinear analog-to-digital converters

(ADCs) and proposes a blind linearization approach based

on the Volterra series. Assuming that the input signal does

not occupy the full Nyquist bandwidth, i.e., there exists an

energy-free band, the Volterra series coefficients are estimated

by minimizing the linearized signal power in the energy-free

band. Simulation results are presented which demonstrate the

effectiveness of the proposed method.

Index Terms— Volterra, analog-to-digital converter (ADC),

energy-free band, post compensation, linearization

1. INTRODUCTION

Shrinking integrated circuit feature sizes allows for more com-

plex digital circuits and algorithms to enhance analog design,

frequently via digital correction and calibration. Post com-

pensation of ADCs is one of the examples that has gained

increasing interest.

A number of post compensation techniques have been pro-

posed in the literature [1], [2]. However, most methods ad-

dress static errors in the converter cores and are not effec-

tive at removing dynamic nonlinearities, which refer to the

input signal dependent distortion. Dynamic specifications for

ADCs are important in high-speed applications such as digi-

tal communication. The key element for the dynamic perfor-

mance of an ADC is the track-and-hold (TH) circuit.

From an analog circuit design perspective, 2 major effects

that degrade the dynamic performance of ADCs are signal-

dependent switch on-resistance and sampling instant errors,

both of which introduce frequency dependent distortions and

are performance limiting factors in high-frequency applica-

tions. A number of digital compensation methods have been

proposed to correct for frequency dependent nonlinearities

[3].

The basic concept of these methods is to invert the ADC

nonlinearity with another nonlinearity (e.g., a Volterra sys-

tem) at the digital output of the ADC. The Volterra series ker-

nel coefficients are obtained by applying least squares to a set

of input and output training signals.

A drawback of this approach is that the ADC input signal

is an analog voltage. As such, in order to know its sampled

value, the ADC input needs to be generated in the digital do-

main and converted to the analog domain. This typically re-

quires a very accurate digital-to-analog converter (DAC) with

greater linearity than that desired in the ADC, which is not

easy to achieve in practice. This motivates the interest in blind

methods which only depend on the ADC output signal.

In this paper, a Volterra series is used to model the nonlin-

ear ADC [4], [5]. With a memory length L and nonlinearity

order P , the input x(n) and output y(n) are related by

y(n) =
P∑

p=1

yp(n), (1)

where yp(n) is the pth-order kernel output

yp(n) =
L−1∑
l1=0

· · ·
L−1∑
lp=0

gp(l1, ..., lp)
p∏

i=1

x(n − li), (2)

and gp(l1, ..., lp) is the pth-order kernel coefficient.

A post compensation structure is then proposed in which

the nonlinear distortion is blindly estimated and subtracted

from the ADC output. The distortion model is parameterized

and an adaptive estimation structure is presented. The estima-

tion method adopts the concept of the energy-free method in

[6].

The key observation of energy-free methods is that band-

width expansion is a hallmark of nonlinear systems. As such,

if the input signal does not occupy the full system bandwidth,

the unoccupied portion of the input signal bandwidth can be

used at the system output as an error signal for parameter

adaptation as energy in this portion of the band is a result

of nonlinearities.

2. COMPENSATION STRUCTURE

In this section, a post compensation structure is proposed based

on a Volterra series representation of a nonlinear ADC. With-

out loss of generality, the ADC output can be written in 2
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Fig. 1. Post compensation for dynamic distortion in an ADC.

parts: the ideal output (scaled input) and the nonlinear distor-

tion

y(n) = Gx(n) + e(n), (3)

where G is the gain of the ADC and e(n) denotes the error

generated by nonlinearity. Combining (1) and (3), the distor-

tion e(n) can be expressed as a Volterra series in terms of the

ADC input

e(n) =
P∑

p=1

L−1∑
l1=0

· · ·
L−1∑
lp=0

hp(l1, ..., lp)
p∏

i=1

x(n − li), (4)

where

hp(l1, ..., lp) =
{

gp(l1, ..., lp) − G, p = 1, lp = 0
gp(l1, ..., lp), elsewhere

. (5)

Define vectors

x(n) =
[
xT

1 (n), ...,xT
P (n)

]T
(6)

h =
[
hT

1 , ...,hT
P

]T

(7)

where the pth-order input vector xp(n) contains all the p-

tuples
∏p

i=1 x(n − li), li = 0, ..., L − 1 and hp contains

all the kernel coefficients hp(l1, ..., lp) arranged in order ac-

cording to xp(n). The nonlinear distortion e(n) can now be

cast in a matrix form which is linear in the kernel coefficients

e(n) = hT x(n) =
P∑

p=1

hT
p xp(n). (8)

In order to remove nonlinear distortion the error signal

e(n) needs to be estimated. Although (8) provides an explicit

model of e(n), the ADC input signal x(n) is not available for

calibration. The alternative proposed here is to estimate the

distortion using the same model as in (4) and (8), with the

ADC input replaced by its output

ê(n) =
P∑

p=1

L−1∑
l1=0

· · ·
L−1∑
lp=0

ĥp(l1, ..., lp)
p∏

i=1

y(n − li)

= ĥ
T
y(n) =

P∑
p=1

ĥ
T

p yp(n), (9)

where ĥp(l1, ..., lp) denotes the estimated kernel coefficients.

Since the distortion is relatively small compared to the out-

put signal, the replacement of input signal with output signal

results in a sufficiently accurate estimate.

Once ê(n) is obtained, the ADC is linearized by subtract-

ing the distortion from its output

yc(n) = y(n) − ê(n), (10)

where yc(n) denotes the linearized ADC output. The corre-

sponding post-compensation structure is depicted in Fig. 1.

3. OPTIMAL COMPENSATOR COEFFICIENTS

In this section, the optimal compensator coefficients based on

the structure shown in Fig. 1 are analyzed. For a typical ADC,

the output signal power is significantly larger than that of the

distortion power. Neglecting e(n) and substituting (3) into (9)

results in

ê(n) ≈
P∑

p=1

Gpĥ
T

p xp(n). (11)

Next, combining (4) and (11), (10) can be rewritten as

yc(n) = Gx(n) +
P∑

p=1

(
hp − Gpĥp

)
. (12)

It is seen that the compensated output yc(n) is equal to Gx(n)
and the nonlinear distortion is removed if the estimated coef-

ficients satisfy

ĥp =
1

Gp
hp, p = 1, ..., P, (13)

which indicates the optimal solution of the compensator coef-

ficients. In the following section, a blind adaptive estimation

method is developed to estimate (13).

4. ADAPTIVE COEFFICIENT ESTIMATION

Assume that the ADC input signal x(n) only occupies the

lower frequency portion of the entire Nyquist band, leaving a

energy-free band in the higher frequency portion. The ADC

output y(n) is corrupted by nonlinear distortion and it’s fre-

quency components spread into the energy-free band.

Passing the ADC output through a high-pass filter results

in

ỹ(n) = y(n) ∗ fHP (n), (14)

where ∗ denotes the linear convolution and fHP (n) denotes a

high-pass filter impulse response. ỹ(n) contains the distortion

in the energy-free band if the cut-off frequency of fHP (n) is

equal or greater than the bandwidth of the input signal.
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Applying the same high-pass filter to the estimated distor-

tion signal ê(n) and combining with (9) yields

˜̂e(n) = ê(n) ∗ fHP (n) =
P∑

p=1

ĥ
T

p ỹp(n), (15)

where ỹp(n) denotes the high-pass filtered version of the pth-

order Volterra kernel

ỹp(n) = yp(n) ∗ fHP (n). (16)

Note that ˜̂e(n) is equal to ỹ(n) if the coefficients hp are cor-

rectly estimated. By defining the error signal

ε(n) = ỹ(n) − ˜̂e(n) = ỹ(n) −
P∑

p=1

ĥ
T

p ỹp(n), (17)

the coefficients hp can be obtained by minimizing E
[
ε2(n)

]
.

As a result of the linear relationship between the kernel

coefficients and error signal, least squares (LS) method can be

applied to carry out the estimation. Usually, the ADC nonlin-

earity drifts due to the temperature variation. Thus, adaptive

algorithms can be employed. For example, the normalized

least mean square (NLMS) algorithm leads to the coefficient

update [7]

ĥp(n) = ĥp(n−1)+μp

ỹp(n)ε(n)∑P
p=1 ‖ỹp(n)‖2

2

, p = 1, ..., P, (18)

where μp is the step size and ‖ · ‖2 denotes the l2 norm. This

estimation structure is shown in Fig. 2.

Fig. 2. Adaptive coefficient estimation.

Using (1), (11), (14) and (15), (17) can be rewritten as

ε(n) =
P∑

p=1

(
hp − Gpĥp

)T

x̃p(n), (19)

where x̃p(n) = xp(n) ∗ fHP (c). It is seen that ε(n) is zero

if (13) is satisfied. However, note that x̃1(n) = 0 because

the input signal does not contain any frequency components

in the energy-free band.

Thus, the NLMS algorithm does not guarantee the con-

vergence of ĥ1 and instead of updating ĥ1(n) it is set to zero.

Consequently, once hp(n), p = 2, ..., P converges, the ADC

output after compensation is

ȳc(n) = y1(n) =
L−1∑
l=0

g1(l)x(n − l), (20)

rather than Gx(n), which indicates that the proposed method

only removes nonlinear distortion and leaves the linear re-

sponse of the ADC intact. Typically, an ADC has a flat linear

frequency response over the Nyquist bandwidth. Therefore,

the proposed method is effective for ADC nonlinearity post

compensation.

5. RESULTS

The performance of the proposed method was assessed via

computer simulations. A nonlinear ADC was modeled by a

Wiener system consisting of a FIR filter with response [0.9,

0.02] and a memoryless nonlinearity represented by the poly-

nomial function u(x) = 0.005x3 − 0.003x2 + x. Thus,

the equivalent Volterra model has L = 2 and P = 3. The

ADC input was generated by passing a zero-mean and unit-

variance i.i.d. Gaussian signal through a low-pass filter with

cut-off frequency 0.6π and limiting the peak-to-peak value to

2. An i.i.d uniformly distributed random signal was added to

the ADC output to mimic quantization noise of the ADC. For

post compensation, the high-pass filter fHP (n) was an Ellip-

tic filter with a cut-off frequency of 0.7π and order 15. The

step size of the NLMS algorithm was chosen as 0.001.

First, compensation performance was evaluated by signal

power spectral densities (PSDs). Fig. 3 shows the PSDs of

the ADC input, output and compensated output. It is seen

that in the energy-free region (from 0.6π to π) the uncompen-

sated TH output has distortion energy around −80 dB. After

the compensation, the distortion is reduced to −120 dB, indi-

cating an effective correction of the nonlinear distortion.
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Next, the convergence of the proposed algorithm was eval-

uated. Based on (13), the mean square deviation (MSD) is

used as the figure of merit, which is defined for the pth-order

kernel coefficients as

MSDp(n)(dB) = 10 log10 ‖hp − Gpĥp(n)‖2
2. (21)

The MSDs for p = 2, 3 are shown in Fig. 4. It can be seen

that both the 2nd and 3rd-order model coefficients converge.
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Fig. 5. FFT of a sinusoidal signal: (a) before calibration; (b)

after calibration.

Finally, the dynamic performance of the ADC was evalu-

ated. Two typical ADC measures are spurious free dynamic

range (SFDR) and harmonic distortion (HD), both of which

are obtained via a tone test and measured using a fast Fourier

transform (FFT) on the ADC output signal. A sinusoid signal

with a normalized frequency of 0.29π was used. The FFT of

the ADC output before and after compensation is shown in

Fig. 5. After post compensation, HD2 is reduced from -57

dB to -92 dB and the HD3 is reduced from -60 dB to -90 dB.

Corresponding, the SFDR is improved around 33 dB.

6. CONCLUSIONS

A digital post correction scheme was proposed to compen-

sate for dynamic errors in ADCs. Based on a Volterra series

model of nonlinear ADC behavior, a compensation structure

was proposed and the optimal compensator coefficients were

analyzed. A blind adaptive method was developed for esti-

mating the coefficients based on an energy-free method. Im-

provements in ADC linearity were demonstrated through the

computer simulations.
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