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ABSTRACT

This work considers the problem of learning an incoherent

dictionary that is both adapted to a set of training data and

incoherent so that existing sparse approximation algorithms

can recover the sparsest representation. A new decorrelation

method is presented that computes a fixed coherence dictio-

nary close to a given dictionary. That step iterates pairwise

decorrelations of atoms in the dictionary. Dictionary learn-

ing is then performed by adding this decorrelation method as

an intermediate step in the K-SVD learning algorithm. The

proposed algorithm INK-SVD is tested on musical data and

compared to another existing decorrelation method. INK-

SVD can compute a dictionary that approximates the training

data as well as K-SVD while decreasing the coherence from

0.6 to 0.2.

Index Terms— Sparse coding, Dictionary learning, Co-

herence, K-SVD

1. INTRODUCTION

In the method of sparse representations, a signal is expressed

as a linear combination of a few vectors named atoms taken

from a set called a dictionary. A good dictionary must obey

several criteria. First it has to be adapted to the data being

represented. Good pre-constructed dictionaries are known for

common classes of signals, but sometimes it is not enough

and the dictionary has to be learned from examples of the data

to represent [1]. Second, even when the dictionary is known,

finding the sparsest representation of the data is in general

an NP-Hard problem. However several polynomial-time al-

gorithms have been proven to be optimal if the dictionary is

sufficiently close to orthogonal [2]. Coherence is one mea-

sure of this proximity. The coherence μ(Φ) of a dictionary Φ
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The μ function is valued between 0 and 1. The minimum is

reached for an orthogonal dictionary and the maximum for a

dictionary containing at least two collinear atoms. This work

aims at merging those two criteria: learn an incoherent dictio-

nary that is adapted to the training data.

There have already been a few early attempts at this task,

but they either restrict the dictionary to a parametric form [3]

or use a relaxed constraint penalization method that makes

it harder to tune the exact value of the coherence [4] while

the results on exact recovery provide hard bounds [2]. There-

fore we propose a new algorithm called INcoherent K-SVD

(INK-SVD) based on the addition of a decorrelation step to

the K-SVD algorithm [5]. This step iteratively selects highly

correlated pairs of atoms in the dictionary and decorrelates

them until the desired coherence is reached.

Section 2 recalls the grounds of the K-SVD algorithm.

Section 3 details the decorrelation method we present. Sec-

tion 4 evaluates our method on musical audio data.

2. DICTIONARY LEARNING

2.1. Dictionary learning problem

Let S be a matrix of N training signals {sn}Nn=1 ∈ R
D.

Dictionary learning consists in finding a dictionary Φ of size

D × M with M ≥ D and sparse coefficients X such that

S ≈ ΦX. For example, if the exact sparsity level K is known,

the problem can be formalized as minimizing the error cost

function f(Φ,X) defined as

f(Φ,X) = ‖S−ΦX‖2FRO (2)

under the constraints

∀m ∈ [1,M ], ‖ϕm‖2 = 1 (3)

∀n ∈ [1, N ], ‖xn‖0 ≤ K (4)
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with ϕ an atom (or column) of Φ and ‖xn‖0 the number of

non-zero coefficients in the nth column of X.

2.2. K-SVD algorithm

Many dictionary algorithms follow an iterative scheme that

alternates between updates of X and Φ to minimize the cost

function (2). Although this work only presents the combina-

tion with K-SVD, our decorrelation method can be combined

with any alternate algorithm. K-SVD iterates two steps:

• the sparse approximation step: knowing S and Φ, we

estimate X, using a sparse approximation algorithm

such as Orthogonal Matching Pursuit,

• the dictionary update step: jointly re-estimate each

atom and its non-zero coefficients to minimize the cost

function (2). The reader can refer to the original article

for more details [5].

2.3. Incoherent dictionary learning problem

The low coherence of the dictionary can be enforced by

adding another constraint to the dictionary learning problem.

The problem is still one of minimizing the cost function f
described in Equation (2) under the constraints (3) and (4),

and another low-coherence constraint is added:

μ (Φ) ≤ μ̄ (5)

with μ̄ a fixed coherence threshold. The proposed INK-SVD

algorithm solves that problem by inserting a decorrelation

step in the K-SVD loop after the dictionary update.

3. DICTIONARY DECORRELATION

3.1. Previous work

Methods for constructing incoherent over-complete dictio-

naries include an alternate projection technique initially pro-

posed by Tropp et al. in [6] and modified by Elad in [7],

which we will use in Section 4 as a benchmark for INK-SVD.

In the cited work, the goal is to realize a Grassmannian

tight frame, that is, an over-complete dictionary with minimal

mutual coherence μmin =
√

(M −D)/D(M − 1), by itera-

tively decorrelate an initial dictionary Φ.

The alternate projection consists in iteratively optimizing the

Gram matrix G = ΦHΦ, so that its off-diagonal values

are shrunk towards μmin and that its spectrum has non-

negative eigenvalues with rank smaller or equal than the

ambient dimension D. This way, we obtain an updated

gram Gnew, that can be in turn factorized into the product

Gnew = ΦH
newΦnew.

This factorization is not unique and does not take into ac-

count the sparse approximation objective of dictionary learn-

ing. While we are planning to fill this gap in future work, this

paper presents an alternative method for dictionary decorrela-

tion that follows a greedy strategy.

3.2. Decorrelation problem

This section proposes a general method that attempts to find

the closest dictionary Φ̂ to a given dictionary Φ̄ with a cohe-

rence lower than a given μ̄. Formally, Φ̂ is defined as:

Φ̂ = argmin
Φ∈Γ

∥∥Φ− Φ̄
∥∥2

FRO
(6)

with Γ = {Φ| μ(Φ) ≤ μ̄ ∧ ‖ϕm‖2 = 1,m ∈ [1,M ]}

The original dictionary Φ̄ is the unconstrained minimum of

the cost function (6). However, either μ(Φ̄) ≤ μ̄ and it does

not need to be decorrelated or Φ̄ is not in the admissible set Γ
of Problem (6). In that case Φ̄ is a good candidate for a start-

ing point for the dual problem that minimizes the coherence

of the dictionary while staying close to Φ̄:

Φ̂ = argmin
Φ∈Γ′

μ(Φ) with (7)

Γ′ =
{
Φ| ∥∥Φ− Φ̄

∥∥2
FRO
≤ ρ ∧ ‖ϕm‖2 = 1,m ∈ [1,M ]

}

with ρ the unknown minimum value reached by the criterion

(6). We will rather address the dual problem (7).

3.3. Decorrelation of two atoms

Let the initial dictionary Φ̄ be composed of only two unitary

atoms ϕ̄1 and ϕ̄2 with a correlation higher than μ̄. In that

simple case we can directly express the optimum of Problem

(6). Let us assume without loss of generality that 〈ϕ̄1, ϕ̄2〉 >
0 (the opposite case can be derived by considering the couple

(ϕ̄1,−ϕ̄2)) and let θ̄ be the half-angle between ϕ̄1 and ϕ̄2.

We are looking for the solution Φ̂ =
(
ϕ̂1 ϕ̂2

)
of Problem

(6). The problem only has two degrees of freedom because

of the normalization constraint. We choose the half-angle θ̂
between ϕ̂1 and ϕ̂2 and the angle α between the sums ϕ̄1 +
ϕ̄2 and ϕ̂1 + ϕ̂2 for parameters as shown on Figure 1. In the

orthonormal basis

(
u1 u2

)
=

(
ϕ̄1+ϕ̄2

‖ϕ̄1+ϕ̄2‖2

ϕ̄1−ϕ̄2

‖ϕ̄1−ϕ̄2‖2

)

all the considered vectors have a simple expression:

Φ̄ =
(
ϕ̄1 ϕ̄2

)
=

(
cos θ̄ cos

(−θ̄)
sin θ̄ sin

(−θ̄)
)

(8)

Φ̂ =
(
ϕ̂1 ϕ̂2

)
=

(
cos(α+ θ̂) cos(α− θ̂)

sin(α+ θ̂) sin(α− θ̂)

)
(9)
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Fig. 1. Decorrelation of two atoms. For the optimal decorre-

lation we would have α = 0 and the pair (ϕ̂1, ϕ̂2) would be

symmetric with respect to u1.

We can then express the different constraints:

|〈ϕ̂1, ϕ̂2〉| = | cos 2θ̂| ≤ μ̄ (10)

‖ϕ̄1 − ϕ̂1‖22 = 2− 2 cos(θ̄ − θ̂ − α) (11)

‖ϕ̄2 − ϕ̂2‖22 = 2− 2 cos(θ̄ − θ̂ + α) (12)∥∥∥Φ̄− Φ̂
∥∥∥2

FRO
= 4− 4 cos(θ̄ − θ̂) cos(α) (13)

If we assume without loss of generality that cos(θ̄ − θ̂) > 0,

then the cost function (13) is minimal for α = 0 and θ̂ as

close to θ̄ as possible: Problem (6) is solved by rotating ϕ1

and ϕ2 symmetrically with respect to their mean until their

correlation reaches μ̄. The angle θ̂ is the angle that reaches

the equality in Equation (11):

cos 2θ̂ = μ̄ (14)

θ̂ =
arccos μ̄

2
(15)

and the dictionary Φ̂ is given by Equation (9).

3.4. General case

In the general case, the previous method provides the steepest

descent direction if only one pair of atoms reaches the maxi-

mal correlation. However one can easily prove that the cohe-

rence function is non-convex with respect to Φ so following a

steepest descent does not guarantee to find a global minimum.

Instead of a descent method, we chose to decorrelate the dic-

tionary by iterating decorrelations of pairs of atoms. The core

idea is simple: as long as there are any atoms with correlation

higher than μ̄, select a pair of them and decorrelate them with

the method explained in Section 3.3.

However, decorrelating two atoms can potentially change

correlations with other atoms in the dictionary, so finding the

next pair would require to update the correlations after each

pair decorrelation. We speed up the process by decorrelating

some pairs in parallel. Instead of selecting one pair of atoms

at a time, we partition the whole dictionary into high correla-

tion pairs (and single atoms that do not need to be modified),

decorrelate all those pairs and only then update the correla-

tions. This is detailed on Algorithm 1.

Algorithm 1 Φ = decorrelate(Φ̄,μ̄)

Φ← Φ̄
while μ(Φ) > μ̄ do
E = partition(Φ, μ̄)
for ∀(ϕi,ϕj) ∈ E do

decorrelate_pair(ϕi,ϕj)
end for

end while

The partitioning is performed in a greedy way. We start

with the whole dictionary, group the pair with the highest

correlation together and remove it from the set of considered

atoms until there are no pairs left with correlation higher than

μ̄. It is detailed in Algorithm 2.

Algorithm 2 E =partition(Φ̄, μ̄)

Φ← Φ̄
E ← ∅
while μ(Φ) > μ̄ do
(i, j) = argmax

∣∣∣ΦHΦ− I
∣∣∣

Φ← Φ \ {ϕi,ϕj}
E ← E ∪ {(ϕi,ϕj)}

end while

4. NUMERICAL EXPERIMENTS

We tested the incoherent dictionary learning algorithm in or-

der to assess if it can provide us with a dictionary for sparse

representation that exhibits minimal coherence and good ap-

proximation quality. The test signal we used is a 16 kHz gui-

tar recording that is part of the test data included in SMALL-

box [8] 1, a Matlab toolbox for testing and benchmarking dic-

tionary learning algorithms that we used in our evaluation. A

musical audio signal was chosen because previous informal

experiments resulted in K-SVD learning a highly coherent

dictionary for this type of data.

We divided the recording into 50% overlapping blocks of

256 samples (corresponding to 16ms) with rectangular win-

dows and arranged the resulting vectors as columns of the

training data matrix S. Then, we initialized three twice over-

complete dictionaries for sparse representation using respec-

tively 1) randomly chosen subset of the training data S, 2)

over-complete DCT and 3) over-complete Gabor frames. We

run the K-SVD dictionary learning algorithm for 20 itera-

tions, allowing for 12 non-zero coefficients in each represen-

tation (which corresponds to about 5% of active elements if

compared with the ambient dimension D).

1http://small-project.eu/software-data/smallbox
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Fig. 2. Signal to noise ratio as a function of the cohe-

rence value for different choices of dictionary initialization

and decorrelation functions. The levels μmax = 1 and

μmin =
√
(M −D)/D(M − 1) indicate the maximum and

minimum coherence attainable by a D ×M dictionary.

We included the proposed INK-SVD decorrelation algorithm

and compared it with the Grassmannian method detailed in

section 3.1, using the implementation presented in [7, p.30].

Figure 2 depicts the results of the experiment. The first

plot on the top presents the SNR achieved when the dictionary

is initialized with random examples from the training data.

We can note that, while K-SVD achieves a good approxima-

tion quality, it does it at the expense of high coherence μ ≈
0.95. On the other hand, INK-SVD is able to achieve a lower

coherence μ = 0.5 while maintaining a SNR> 20dB and,

after this value, the approximation quality drops linearly with

the mutual coherence. The Grassmannian method achieves a

correlation μ ≈ 0.45, but with a worst SNR ≈ 8dB.

The other two plots corresponding to DCT and Gabor ini-

tializations display overall a poorer approximation quality. In

these cases, Grassmannian fails to significantly decorrelate

the dictionaries and achieves a very poor SNR, while INK-

SVD is able to decorrelate the dictionaries up to μ = 0.2 with

a small loss in approximation accuracy.

5. CONCLUSION

We provided an algorithm to learn a dictionary with fixed co-

herence from training data. The coherence itself is a param-

eter of the algorithm that can be tuned to fit the needs of an

application. Experiments on musical sound have shown that

our algorithm can significantly reduce the coherence of the

dictionary while almost preserving the approximation qual-

ity.

The proposed decorrelation method is generic and can be

used in other contexts. In our experiments it even proved bet-

ter than the Grassmannian method for coherence minimiza-

tion. Yet there are still many theoretical questions to be an-

swered, the biggest one being obtaining convergence guaran-

tees depending on the coherence threshold.

It might also be possible to improve the approximation

quality by specializing the decorrelation for the learning task.

In the decorrelation problem (6), one could replace the dis-

tance to the original dictionary by the dictionary learning er-

ror (2).
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