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ABSTRACT
A new method for estimating scalar fields is proposed employing
adaptive networks. The theoretical problem of function approxi-
mation is posed and the networked solution via distributed adap-
tive algorithms is introduced. Two approximate solutions employ-
ing adaptive networks are considered, and it is shown that both cases
approach the theoretical solution in the limit case. In the first setup,
nodes remain anchored during the network operation. The second
version involves node relocation, either entirely at random over the
region of interest or drifting according to a random walk model.
Simulations illustrate the method for estimating a 2D scalar field.

Index Terms— Scalar fields, adaptive networks, distributed es-
timation

1. INTRODUCTION

Scalar fields arise naturally in a myriad of scenarios, such as preci-
sion agriculture, meteorological measures, disaster relief, pollution
control, etc. Often they need to be properly modelled, in order to
study a variable of interest covering a (geographic) area of interest,
or even take action as consequence of the estimated field. A typical
approach is to combine a pre-selected set of continuous basis func-
tions, so that the field of interest is modelled. The set of combiners is
chosen so that the error between the model and the actual field over
the region of interest is kept within a desired accuracy. For linear
combiners, a set of coefficients may be calculated optimally in the
least-squares sense, for instance.

This paper shows how the scalar field estimation problem may
be posed in the adaptive network (AN) framework [1, 2]. By col-
lecting a set of field measurements at the nodes location, a network
of nodes running a distributed adaptive algorithm is able to cooper-
atively learn the set of combiners that, together with the basis func-
tions, model the scalar field of interest. This is achieved in a fully
distributed manner.

A brief performance study is carried out in two scenarios. In the
first, nodes are placed randomly over the region of interest and re-
main stationary; in agreement with intuition, it is shown that as the
number of nodes increases, the AN solution approaches the theoret-
ical solution. In the second scenario, nodes may move freely, and
it is shown that if they cover properly the region of interest, the AN
may in the long run achieve the theoretical solution on the mean.
Simulations illustrate the results obtained by the proposed method.

2. PROBLEM FORMULATION: LEAST SQUARES
SOLUTION

Let us consider a (geographical) region X and a scalar field F de-
fined over this region. Assume further that X is a compact subset

of Rp and that F ∈ C(X), where C(X) is the linear space of all
continuous functions from X to R. Given a (linearly independent)
set of basis functions B = {hl ∈ C(X) : l = 1, . . . ,M}, the best
approximation for F , say in the least-squares sense, may be found
via a linear combination of the functions in B.

Specifically, denote by H the subspace spanned by the functions
in B, and let H(x) = [h1(x) . . . hM (x)] be the row vector resulting
from evaluating each function hl ∈ B at the point x ∈ X . We are
then interested in finding the column vector ωo ∈ RM that solves

min
ω
JD(ω), JD(ω) �

∫
X

[F (x)−H(x)ω]2 dx (1)

If we endow C(X) with the canonical inner product

〈f, g〉 �
∫
X

f(x)g(x) dx (2)

and since H is finite dimensional, the problem is readily solved by
the orthogonal projection of F over H [3], which can be done by
solving the normal equations

Gω = y (3)

where [G]i,j = 〈hi, hj〉 and yl = 〈hl, F 〉. The solution so obtained,

which we denote by F̂ , is then of the form

F̂ (x) = H(x)ωo =
M∑
l=1

hl(x)[ω
o]l (4)

The resulting error ε(x) � F (x) − F̂ (x) is orthogonal to H, i.e.,
〈ε, hl〉 = 0, l = 1, . . . ,M .

Figure 1 depicts an example where X = [0, 1] × [0, 1] ⊂ R2

and the scalar field is given by

F (x1, x2) =
0.7√

1 + 20 · (x1 − 0.15)2 + 20 · (x2 − 0.15)2
+

1√
1 + 15 · (x1 − 0.7)2 + 15 · (x2 − 0.7)2

(5)

This example is used throughout the paper. For illustration purposes,
we select M = 36 Gaussian basis functions

hl(x) = exp(−al‖x− cl‖2) (6)

where the {cl} are evenly distributed overX (black dots in Fig. 1(d))
and al = a was chosen so that hl(x) = 0.15 on a neighboring cen-
troid, making each individual function reasonably relevant within the
scope of its nearby functions. The solution and the corresponding
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residual error were obtained, respectively, from (3) and (1) by nu-
merical integration, since, in general, a closed form solution cannot
be obtained; the resulting residual error was JD(ωo) = 2.11 · 10−4.
The residual error may be arbitrarily decreased by, for example, in-
creasing the number of basis functions in the region, since any func-
tion in C(X) can be approximated arbitrarily well by a linear com-
bination of Gaussian functions [4].
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Fig. 1: (a), (b): surface and contour plot for the scalar field F defined by
(5). (c), (d): same plots obtained with the least squares estimate as in (1).
The black dots on Fig. 1(d) are the Gaussian functions’ centroids {cl}.

3. THE ADAPTIVE NETWORK SOLUTION

In this section, we proceed to show how the theoretical solution from
the previous section can be solved in a practical scenario, with arbi-
trary accuracy, by an adaptive network. For that matter, at time i a
set of N nodes is placed in the field X . We assume that each node
knows its own current position pk,i. The regressor has samples of
the basis functions at the node location, i.e., uk,i = H(pk,i) and
a noisy version of the scalar field is captured by the desired signal
dk(i) = F (pk,i)+ vk(i). Note that {dk(i), uk,i} are realizations of
the random quantities1

dk = F (pk) + vk (7a)

uk = H(pk) (7b)

where vk is a zero mean white Gaussian process with variance σ2
v in-

dependent of each pk. The randomness in the regressor comes from
the fact that the nodes, in the general case, are randomly located2.
We can now pose the problem that the network will try to solve (see
Figure 2). Collecting the data into

Uc � col {u1, . . . ,uN} (N ×M) (8a)

d � col {d1, . . . ,dN} (N × 1) (8b)

1In this work, random quantities are boldfaced and their realizations are
normal font.

2Node’s k current position pk,i is a realization of pk

then the task of the adaptive network is to find wo that solves [1]

min
w

E ‖d−Ucw‖2 (9)

We would like to have wo from (9) approaching ωo from (1).
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Fig. 2: Method setup.

Although several distributed algorithms may be employed to
solve (9) adaptively [2, 5, 6, 7, 8, 9, 10], the setup will be illus-
trated via the standard diffusion LMS algorithm (dLMS) [1]. For the
dLMS, at every time step i, each node k has access to a set of es-

timates {ψ(i−1)
k }k∈Nk,i−1 from its neighborhood Nk,i−1, which is

the subset of nodes currently connected to node k, including itself.
Each node then fuses its estimate with those from its neighbors into

φ
(i−1)
k , and then updates its own, according to the following update

rule

φ
(i−1)
k =

∑
l∈Nk,i−1

aklψ
(i−1)
l , φ

(−1)
k = 0 (10a)

ψ
(i)
k = φ

(i−1)
k + μku

∗
k,i

(
dk(i)− uk,iφ

(i−1)
k

)
(10b)

where {akl ≥ 0} are convex combiner coefficients, and μk is the
step size for node k. The spatial fusion step represented by equation
(10a) is mandatory for proper scalar field interpolation, not neces-
sarily for mean square performance improvement as in the original
data model formulation for ANs [1, 2].

The network topology is defined assuming that each node is able
to communicate with its neighboring nodes within a predetermined
range. Two nodes are connected when they are less than s units of
distance apart, that is

Nk,i = {l : ‖pk,i − pl,i‖ < s} (11)

4. ASSESSING NETWORK PERFORMANCE

We would like to assess the impact of the adaptive network solution
when compared with the theoretical solution from Section 2. In other
words we would like to asses under which conditions wo → ωo.
As a measure of performance we adopt the global square deviation
(MSD)

η(i) =
1

N

N∑
k=1

E ‖ωo − ψ
(i−1)
k ‖2 (12)

that measures how far is, on average, the network solution from the
optimal obtained by solving the classical least squares problem (1).

Let the network cost function be

J(w) � |X|
N

E ‖d−Ucw‖2 (13)

3566



where |X| = ∫
X
dx, so that minimizing J is equivalent to solving

the problem (9). Expanding (13), together with the data model (7),
yields

‖d−Ucw‖2 =
N∑
l=1

[dl − ulw]
2 =

N∑
l=1

[F (pl)−H(pl)w]
2

− 2
N∑
l=1

[F (pl)−H(pl)w]vl +
N∑
l=1

v2
l (14)

Taking expectations (recall that vl is zero mean and independent of
pl) and multiplying by |X|/N we have

J(w) =
|X|
N

N∑
l=1

E [F (pl)−H(pl)w]
2 + |X|σ2

v (15)

Two scenarios of interest are considered from (15) in the sequel, both
converging in the limit to the theoretical solution (1).3

4.1. Anchored nodes

In the first scenario we assume the nodes are deployed randomly at
start and remain fixed in their locations, so that, as far as the AN
operation is concerned, the deterministic quantities {pk} are realiza-
tions of the uniformly distributed random variables {pk}.

Recall that for some f ∈ C(X), if the points {x1, . . . xN} are
i.i.d. according to a uniform distribution, then

|X|
N

N∑
l=1

f(xl) ≈
∫
X

f(x) dx (16)

with the corresponding error variance approaching zero at a rate pro-
portional to 1/N . Thus, the first term in (15) can be treated as an

approximation ĴD for JD:

ĴD(w) =
|X|
N

N∑
l=1

[F (pl)−H(pl)w]
2

(17)

For fixed nodes, we can rewrite the network cost function as

J(w) = ĴD(w) + |X|σ2
v (18)

Thus, as long as the number of nodes is sufficiently high, minimizing
J leads to a good approximation to the problem in (1). In other
words, as N tends to infinity, (17) tends to an integral and equation
(1) is recovered.

4.2. Relocating the nodes

An alternative for increasing the number of nodes is to reposition
them regularly, which enhances the coverage of the scalar field. As
a limit scenario, we consider the case where the nodes are randomly
relocated at each iteration: the random variables {pk} are uniformly
distributed over X during the operation of the network. Regarding
the summand in the first term of (15) we have

E [F (pl)−H(pl)w]
2 =

∫
X

[F (x)−H(x)w]2fpl(x) dx =

1

|X|
∫
X

[F (x)−H(x)w]2 dx (19)

3Adaptive networks run adaptive algorithms that are subject to gradient
noise, also introducing deviations from the optimal solution [1, 11].

Thus, the sum in (15) results exactly in JD , and we can write the
network cost function as

J(w) = JD(w) + |X|σ2
v (20)

Hence, minimizing J is equivalent to minimizing JD .

4.3. Random walk

A more practical solution to achieve the optimal solution, instead of
increasing ad infinitum the number of nodes, or random relocation,
is to make the nodes sample properly the region of interest. In fact,
there are several strategies to allocate the sensors [12]. We test here
a simple strategy based on a random walk model, where the nodes
drift around according to

pk,i = pk,i−1 + qk,i (21)

where qk,i is a zero mean white Gaussian process, with variance
σ2
q = 1/N2. In our simulations, in order to constrain pk,i withinX ,

we included a hard limiter on each coordinate, restricting its value
to the interval [0, 1]. Intuitively, in the long run, given a reasonable
number of nodes, the whole region will be visited, therefore the solu-
tion should tend to the optimal. This is corroborated by simulations.
Formal proof will be provided in future work, along with a suitable
redirection strategy.

5. SIMULATIONS

We tested our method with the scalar field defined in (5), and con-
sidering the three scenarios described on section 4: anchored nodes,
random relocation and random walk. In each case we present the
ensemble average MSD, averaged over 100 experiments. The noise
variance σ2

v was set to 0.07, corresponding to an average SNR of 10
dB across X . The diffusion LMS employs μk = μ = 1, and the
combiner coefficients were selected according to the nearest neigh-
bor rule:

akl =

{
1

|Nk| , l ∈ Nk

0, otherwise
(22)

where the neighborhood set is determined according to (11) with
s =

√
0.1.
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Fig. 3: Ensamble average of the global MSD for the anchored nodes sce-
nario

Figure 3 shows the ensemble average for the anchored nodes
case. As expected, increasing the number of nodes N resultes in
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Fig. 4: Ensamble average of the global MSD for scenario where the nodes
are randomly relocated at each iteration.
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Fig. 5: Ensamble average of the global MSD for the random walk scenario.

better performance. For this scenario we also show, in Figure 6, the
surface and contour plot of the average weight 4

1

N

N∑
k=1

ψ
(∞)
k (23)

obtained by the network forN = 50 nodes; in all other cases (Figure
(3) for N = 150 and N = 250 and Figure 4 and 5) the analogous
plots are visually indistinguishable from the ones in Figure 1(c) and
1(d).

Figures 4 and 5 show the ensemble average MSD curves for, re-
spectively, the random relocation and random walk model. Again the
results corroborates the study from section 4 reaching, in all cases,
practically the same error in steady state. Note that when nodes are
allowed to move, even for small N , the solution gets considerably
better as compared to the anchored nodes’ case (compare Figures 4
and 5 with Figure 3).

6. CONCLUSION AND FUTURE WORK

A new method for estimating scalar fields has been introduced em-
ploying the concept of adaptive networks. Simulations show that for
a sufficient number of nodes, the agreement between the network

4For illustration purposes only: no global information is required in our
method.
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Fig. 6: (a), (b): surface and contour plot for the average network weight in
the anchored node scenario, for N = 50.

solution and the actual scalar field is as accurate as desired. Repo-
sitioning the nodes regularly may be an alternative to increasing the
number of nodes, provided that the relocation strategy covers rea-
sonably well the field of interest.

Future work involves deriving relocation strategies that further
improve network performance, including time varying scalar fields.
Different distributed adaptive algorithms [10, 9] will be considered,
as well as analytical models for the network error evolution.
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