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ABSTRACT
Conditional posterior Cramér-Rao lower bound (CPCRLB)

gives a lower bound for the mean squared error (MSE) of

a sequential Bayesian estimator that is conditional on a his-

torical observation sequence. Yet it can be further improved

in tightness, together with a reduction in computational bur-

den. In this paper, we introduce a marginalization technique

and a weighting operation to improve the CPCRLB, where

marginalizing out the historical states greatly simplifies the

integral without any loss of the efficiency on bounding the

one-step-ahead MSE, and the weighting operation lifts the

CPCRLB after finding out a suitable weighting function.

An application on univariate non-stationary growth model

(UNGM) presents a closed-form solution of the marginalized

CPCRLB, and a high-performance weighted CPCRLB need-

ing only an extra one-dimensional numerical maximization.

Index Terms— Bayesian estimator, Fisher information

matrix (FIM), Monte Carlo integral, non-linear Gaussian, par-

ticle filter

1. INTRODUCTION

Conventional Cramér-Rao lower bound (CRLB) lower bound-

s the variance of any unbiased estimate of a fixed parameter,

whereas the posterior CRLB (PCRLB) bounds the mean

squared error (MSE) of the estimates of stochastic parameters

[1]. For discrete-time filtering problems, the (uncondition-

al) PCRLB low bounds the best achievable performance of

a nonlinear dynamic system, through an elegant recursive

scheme [2]. But if taking the historical observation data into

consideration, one should resort to the conditional PCRLB

(CPCRLB) [3].

The CPCRLB meets the requirement of many practical

applications, and there exists a recursive scheme (with an

inevitable approximation on expectation) to cope with high-

dimensional integrals [3]. But is CPCRLB tight enough? Fo-

cusing on the tightness of the PCRLB, [4] has presented a
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brilliant weighting technique to control the tightness of the

bound. However, due to the constructive characteristic of this

approach, it is difficult to apply this technique to the high-

dimensional and complicated non-linear state-space models

directly.

Marginalizing out the historical states is suggested in this

paper, based on which, a practically operable weighting func-

tion is introduced to improve the tightness of the CPCRL-

B. Notably, the marginalization operation leads to no per-

formance degradation for bounding the one-step-ahead MSE,

and is practically available, in an approximated form, from a

variety of the existing Bayesian filtering algorithms. For this

reason, it is possible to improve the CPCRLB by performing

weighting operation on the marginalized model, only needing

a deliberate selection of a weighting function that reflects a

tradeoff between the tightness and the computational feasibil-

ity. An application on univariate non-stationary growth model

(UNGM) demonstrates the practicability and efficiency of our

marginalized and weighted CPCRLBs, in which all integrals

are calculated analytically.

2. NOTATION

Distinguishing stochastic variables/vectors from their realiza-

tions (samples), using uppercase letters as [5], is helpful (and

sometimes indispensable) to clarify the expectation operation

related to the CPCRLB. This section also adds an extra expla-

nation on the distribution used in computing the expectation,

but it is omitted in the following sections without loss of rigor.

Throughout X1:k = [XT
1 , X

T
2 , . . . , X

T
k ]

T denotes a s-

tochastic state sequence with the expectation

E[XT
1:kX1:k] < ∞ (1)

where the expectation operation is taken with respect to

(w.r.t.) the probability density function (pdf) p(x1:k), x1:k =
[xT

1 ,x
T
2 , . . . ,x

T
k ]

T denotes a realization of X1:k, and xi,

i = 1, 2, . . . , k, are n-dimensional vectors.

Let z = [zT1 , z
T
2 , . . . , z

T
k ]

T be a realization of a stochas-

tic observation sequence Z1:k = [ZT
1 , Z

T
2 , . . . , Z

T
k ]

T and as-

sume the derivability of the conditional pdf p(x1:k|z1:k) w.r.t.
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x1:k, we have the following scoring function

s(x1:k|z1:k) = ∂p(x1:k|z1:k)
p(x1:k|z1:k)∂x1:k

=
∂ log p(x1:k|z1:k)

∂x1:k
.

(2)

The Fisher information matrix (FIM) of the stochastic

vector X1:k conditional on the observation z1:k−1 is defined

based on the scoring function s(x1:k|z1:k) as

J1:k = E
[
s(X1:k|z1:k−1, Zk)s(X1:k|z1:k−1, Zk)

T
]

(3)

where the expectation is taken w.r.t. p(x1:k, zk|z1:k−1), and

(3) also implies the existence of the expectation.

The inverse J−1
1:k is called CPCRLB [3], which lower

bounds the (conditional) MSE

ΣΣΣ1:k = E[(X1:k − E[X1:k|z1:k−1, Zk])

(X1:k − E[X1:k|z1:k−1, Zk])
T
] (4)

as

ΣΣΣ1:k ≥ J−1
1:k (5)

where ΣΣΣ1:k ≥ J−1
1:k means ΣΣΣ1:k − J−1

1:k is positive semidefi-

nite. Here, ΣΣΣ1:k is actually the optimal MSE achieved by the

Bayesian estimator, and the inner and outer expectation in (4)

are taken w.r.t. p(x1:k|z1:k) and p(zk|z1:k−1), respectively.

3. MARGINALIZATION

The computational burden (i.e., high-dimensional integral) in

(3) can be greatly reduced if we focus on deriving a marginal-

ized CPCRLB for the one-step-ahead state Xk (assuming that

zk has not been observed yet). Under this strategy, we can

derive the CPCRLBs successively, which leads to an online

estimation of the one-step-ahead MSE.

Note that the one-step-ahead MSE is the lower-right n-

by-n submatrix of ΣΣΣ1:k, which can also be represented as

ΣΣΣk = E[ (Xk − E[Xk|z1:k−1, Zk])

(Xk − E[Xk|z1:k−1, Zk])
T
]. (6)

The standard PCRLB theory introduces an (marginalized)

FIM

Jk = E
[
s(Xk|z1:k−1, Zk)s(Xk|z1:k−1, Zk)

T
]

(7)

to lower bound ΣΣΣk as

ΣΣΣk ≥ J−1
k . (8)

Then, questions are: a) what is the relationship between J−1
k

and the n-by-n lower-right submatrix of J−1
1:k; b) how to cal-

culate the expectation (7).

The first question is answered by Theorem 1, which de-

clares that J−1
k is no lower than the n-by-n lower-right sub-

matrix of J−1
1:k. Therefore, (7) reduces the nk-dimensional

integral in (3) into an n-dimensional one without any loss of

efficiency on bounding the one-step-ahead MSE ΣΣΣk.

Theorem 1 Under the assumptions of (1) and (3), we have
J−1
k ≥ (

J−1
1:k

)
k,k

(9)

where
(
J−1
1:k

)
k,k

denotes the n-by-n lower-right submatrix of

J−1
1:k.

The proof of Theorem 1 is referred to Proposition 1 in [4].

The second question is somewhat complicated. In theory,

the expectation in (7) needs the marginal pdf p(xk, zk|z1:k) =
p(xk|z1:k−1)p(zk|xk), which is not easy to get (otherwise

one may compute ΣΣΣk directly). But in practice, p(xk|z1:k−1)
is referred to a marginalized prediction pdf, which is approx-

imated in most existing Bayesian filtering algorithms, includ-

ing a Gaussian density approximation in (extended or un-

censored) Kalman filtering and Gaussian particle filtering, a

Gaussian mixture approximation in Gaussian sum particle fil-

tering, and (weighted) particles approximation in particle fil-

tering. In summary, p(xk, zk|z1:k) is practically available in

most filtering processes, which can be used to calculate (7)

straightforwardly, even admitting analytical solutions.

4. WEIGHTING

Weighting is a critical technique that controls the tightness

of the PCRLB, which can be used to improve the efficien-

cy of the PCRLB. This section presents how to improve our

marginalized CPCRLB through weighting.

For clarity, we summarize the operations and properties

for our weighted CPCRLB in Theorem 2. The proof is omit-

ted since it is paralleled to Proposition 2 and 3 in [4]. But our

weighting function q(·) differs from the one in [4] in bound-

ing the one-step-ahead MSE rather than the current MSE.

Theorem 2 Let q(xk, zk) = [q1(xk, zk), . . . , qn(xk, zk)]
T

be a vector-valued function where n is the dimension of xk.
For each i = 1, 2, . . . , n:

1. qi(xk, zk)p(xk|z1:k) is continuously differentiable.

2. E [‖qi(Xk,Zk)‖ |z1:k−1] < ∞.

3. E [qi(Xk,Zk)|z1:k−1] �= 0.

Then, define sq(xk|z1:k) = [s̃1, s̃2, . . . , s̃n]
T where

s̃i =
∂qi(xk, zk)p(xk|z1:k)

p(xk|z1:k)∂xk,i
, i = 1, 2, . . . , n (10)

have finite second moments. This induces
Jq,k = E

[
sq(Xk|z1:k−1, Zk)sq(Xk|z1:k−1, Zk)

T
]
. (11)

At last, we have
ΣΣΣk ≥ QJ−1

q,kQ (12)

where Q = diag (E [q(Xk, Zk)|z1:k−1]) is a diagonal ma-
trix with the diagonal entries E [qi(Xk, Zk)|z1:k−1]. And the
equality holds if and only if for each i, qi(xk, zk) has the form

qi(xk, zk) =
ci

p(xk|z1:k)
∫ ∞

xk,i

γip(t|z1:k)dti
∣∣∣∣∣
ti∗=xk,i∗

(13)

where
γγγ = ΣΣΣ−1

k (xk − E [Xk|Z1:k = z1:k])

ci is an arbitrary non-zero constant, and i∗ indicates the mul-
tiindex by eliminating i from [1 : n].
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ΣΣΣk ≥ E2 [q(Xk)|z1:k−1]

E

[(
q′(Xk) + q(Xk)

p′(Xk|z1:k−1)
p(Xk|z1:k−1)

)2

+ 1
ρ2 q2(Xk) (g′(Xk))

2

∣∣∣∣ z1:k−1

] (14)

Gaussian additive noise assumption on the observation zk
may greatly simplify the expression (12). A useful example

with scalar states and observations was provided in [4], where

the observation zk is assumed to follow zk = g(xk) + ε with

Gaussian noise ε ∼ N (0, ρ2). In this case, after restricting

q(xk, zk) = q(xk) independent of zk, (12) can be simplified

into (14). This is utilized to solve the following example.

Example This example is closely related to the UNGM mod-

el investigated in Section 5. In our example, the observation

function zk = x2
k+ε, where ε ∼ N (0, ρ2), and the prediction

pdf is modeled as p(xk|z1:k−1) = N (xk;μ, σ
2).

For easy calculation, we restrict q(xk) = exp(λx2
k) (oth-

er forms are also admissible), where λ is an adjustable pa-

rameter. After performing analytical integrals (the process is

omitted here), we get a family of weighted CPCRLBs as

ΣΣΣk ≥ c(λ)

=

√
1−4λσ2

1−2λσ2 exp
(
− μ2

2σ2

(
1 + 1

1−4λσ2 − 2
1−2λσ2

))
(2λσ2−1)2/σ2+4σ2/ρ2

1−4λσ2 + 4μ2(λ2+1/ρ2)

(1−4λσ2)2

. (15)

After maximizing the univariate function c(λ) numerically,

the optimal weighted CPCRLB can be obtained, as plotted in

Fig. 1. In the rest of this paper, the weighted CPCRLB always

indicates the optimal one.

Fig. 1 plots the MSE, weighted CPCRLB, and (marginal-

ized) CPCRLB as the functions of μ, where σ = 1, and ρ is

set as 0.1, 1, and 10, respectively. Obviously, the CPCRLB

diverges from the MSE as μ is close to zero and/or ρ is rel-

atively small. This suggests the bimodal characteristic of the

observation equation as an origin of the divergence. By using

the weighting operation, the divergence has been reduced a

great deal, which is more significant when μ is not too close

to zero. Hence, it is attracting to use the weighting technique

to improve the CPCRLB, by an elaborate construction of q(·).

5. SIMULATIONS

Simulations are performed on the univariate non-stationary

growth model (UNGM), which is given by

xk = αxk−1 + β
xk−1

1 + x2
k−1

+ γ cos(1.2(k − 1)) + uk (16)

zk = κx2
k + vk, k = 1, 2, . . . , 20 (17)

where x0 ∼ N (0, 1), uk ∼ N (0, 1), vk ∼ N (0, ρ2), and

γ = 8, κ = 1/20. The other parameters are set respectively

in three cases (with varying non-linearities and bimodalities),

those are: a) α = 1, β = 5, and ρ = 1; b) α = 1, β = 0.1,

and ρ = 0.1; c) α = 0.5, β = 25, and ρ = 0.1.

The particle filtering scheme is used to produce a Gaus-

sian density approximation of the marginalized prediction pdf

as p(xk|z1:k−1) = N (μ̂, σ̂2), which leads to our marginal-

ized CPCRLB 4κ2ρ−2(μ̂2 + σ̂2) + σ̂−2, and the weighed

CPCRLB derived by maximizing c(λ) that is obtained by re-

placing μ, σ, and ρ in (15) with μ̂, σ̂, and ρ/κ, respectively.

The original CPCRLB is calculated using the iterative scheme

(involving Monte-Carlo integrals) in [3].

Fig. 3 exhibits the improvement of our weighted CPCRL-

B and the performance of our marginalized CPCRLB through

a comparison with the original CRLB and MSE. Three cas-

es, given in Fig. 2, are considered, where the last two in-

dicate a high-bimodality and a both high-bimodality and

high-nonlinearity cases, respectively. Obviously, divergence

happens on the CPCRLB under the last two cases, and our

weighted CPCRLB substantially lifts the bound, extremely

well in the high-bimodality case (b).

6. CONCLUSION

We have improved the CPCRLB in tightness and computa-

tional complexity, through adopting a weighting operation

after marginalizing out the historical states. This approach

makes full use of the outputs of the existing Bayesian filtering

algorithms, and thus provides a low-complexity but also high-

performance lower bound for the one-step-ahead MSE. Note

that the derivation of the weighted CPCRLB is independent

of the form of the state equation. Thus the proposed approach

can be applied to a variety of non-linear filtering problems

with complicated state equations, needing only to construct a

weighting function suitable to the observation equation.
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Fig. 1: Comparisons of (marginalized) CPCRLB, weighted CPCRLB, and MSE under different μ and ρ.
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Fig. 2: Tracking a moving target under univariate non-stationary growth model (UNGM) with particle filter, where the param-

eters are tuned to realize different non-linearities and bimodalities.
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