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ABSTRACT

This paper proposes a novel two-step distributed detection scheme
for cooperative spectrum-sensing networks. In the first step, indi-
vidual contributions from nodes within a neighborhood are fused
through an adaptive combiner, which updates the weights and makes
local decisions iteratively. In the second step, local decisions are
shared within a neighborhood to yield a consensus decision. Results
are presented in terms of complementary receiver operating charac-
teristic curves and show the good behavior of the proposed scheme
when compared to the optimal linear fusion rule, even if correlated
node contributions are considered.

Index Terms— Cognitive radio, spectrum sensing, distributed
detection, adaptive signal processing, least mean square algorithms

1. INTRODUCTION

Cognitive radio (CR) technology arises as a promising alternative
for the spectrum allocation problem, since it allows a secondary user
(SU) to share and opportunistically use the same band assigned to
a primary user (PU) [1]. The efficiency of this dynamic spectrum
management depends on how reliably the SU identifies the presence
(or absence) of legacy users. Methods for spectrum sensing may in-
volve energy detection, matched filter detection or feature detection.
Matched filters are the best option if the SU knows the PU’s signal
shape a priori, but energy detection offers easy implementation and
requires less a priori information [2].

Detection performance can be improved by spatial cooperation
among SUs, for a combination of their contributions can produce a
more reliable decision. This scheme will be referred to herein as
cooperative spectrum sensing. Some strategies consider the use of
a fusion center, whose task is to collect all the individual sensing
information, fuse them and make the decision. Several optimal and
suboptimal strategies for centralized data fusion can be found in the
literature. In [3] the authors suggest an algorithm for maximizing
the probability of detection for linear fusion based on semidefinite
programming. An online adaptive linear fusion based on orthogonal
projections onto convex sets (POCS) is proposed in [4].

The centralized scheme may not be a good solution if the sys-
tem is composed of a large number of nodes. Information centered at
only one point would require the fusion center to be able to process a
very large amount of data, in addition to being more sensitive to link
failures. Furthermore, increasing distance between nodes require the
radios to use more power and consequently increases network en-
ergy consumption [5]. Therefore, a distributed approach arises as a
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good alternative for the final decision made by each of several small
neighborhoods [5]. Data is shared only among nodes within a neigh-
borhood.

Although a rich literature can be found on the distributed spec-
trum sensing, few works relate to adaptive node cooperation strate-
gies, which can offer better results under dynamic propagation en-
vironments [4]. In their recent research, Cattivelli and Sayed [6]
proposed a distributed spectrum sensing technique with adaptive co-
operation among nodes by reformulating the detection problem as a
parameter estimation problem. However, their work considers that
information about the user’s signal is available at every node, which
may not be a valid assumption in some cases (e.g., several signal
models sharing the same spectrum).

In this paper, we propose a novel cooperative network featur-
ing distributed two-step combining with online adaptive cooperation.
Each node employs a simple and conventional energy detector. The
main goal of the suggested two-step combining is to distribute the
decision tasks taking advantage of spatial diversity information from
different neighborhoods. In its turn, the proposed online adaptive
linear combining produces decisions after each update instant thus
avoiding the need to wait until a large amount of data is processed.

The performance of the proposed network is investigated with
simulations with uncorrelated and correlated node contributions.
The results are presented by means of complementary receiver op-
erating characteristic (C-ROC) curves and compared to the optimal
linear fusion rule described in [3].

2. TWO-STEP DISTRIBUTED NETWORK

We consider a network of M spatially distributed secondary users
(nodes) that sense the environment under two hypotheses: H0 (ab-
sence of primary signal) or H1 (presence of primary signal). During
a detection interval, each node, say node k, first produces a local
energy estimate yk, which is shared with its own neighbors defined
by index set Nk. The neighborhood Nk of node k is here taken
as the set of nodes, including itself, linked to it, say within a trans-
mission radius [6]. Upon receiving the local energy estimates from
the nodes in the neighborhood, a local (binary) decision uk is made
based on a weighted combination of local energy estimates, referred
to as the soft combining step. Finally, the local binary decisions are
shared among the nodes within the neighborhood and are combined
within each node to yield a local consensus decision, referred to as
hard combining step. The following sections describe the two above
mentioned steps, i.e., the soft and hard combining steps.

2.1. First Step: Soft Combining

Let us consider the neighborhood Nk of node k with node degree
Mk = |Nk|. The main idea of this first step is to employ soft com-
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Fig. 1. Distributed topology used in the simulations [7].

bining with a linear fusion rule. That is, the local test statistic of
node k is formed as

T (yk) =
∑

i ∈ Nk

wiyi = w
T
kyk

uk=1(H1)

�
uk=0(H0)

γk (1)

where wk = [w1, w2, . . . , wMk
]T and yk = [y1, y2, . . . , yMk

]T

contain the respective weights and energy estimates in Nk. The re-
sulting test statistic T (yk) is then compared to a local threshold γk
to yield a local binary decision, uk .

Energy detectors [8] implemented at each node of the neigh-
borhood collect information from the environment during the same
sensing interval. Assuming that they use a sufficiently large number
of samples for computing yi, i ∈ Nk, such estimates may be con-
sidered Gaussian variables under each hypothesis [8], then the test
statistics T (yk) is also Gaussian [3]:

T (yk) ∼

{
N
(
wT

kμk,0,w
T
kΣk,0wk

)
, for H0

N
(
wT

kμk,1,w
T
kΣk,1wk

)
, for H1

(2)

where μk,0(μk,1) and Σk,0(Σk,1) are the mean vector and covari-
ance matrix of yk under hypothesis H0(H1), as defined in [9].

The detection performance of node k after employing soft com-
bination can thus be evaluated with help of the following expressions
for probabilities of false alarm (Pf,k,1) and detection (Pd,k,1):

Pf,k,1 = P (T (yk) ≥ γk|H0) = Q

(
γk −wT

kμk,0√
wT

kΣk,0wk

)
(3a)

Pd,k,1 = P (T (yk) ≥ γk|H1) = Q

(
γk −wT

kμk,1√
wT

kΣk,1wk

)
(3b)

where Q (·) is the complementary cumulative distribution function.

2.2. Second Step: Hard Combining

In the second step, each node shares its local binary decision (ob-
tained in the first step) with its neighbors. Each node then com-
bines the received decisions with its local decision using conven-
tional hard combining (OR-fusion rule) to render a local consensus
decision [10]. The OR-fusion rule implies that node k decides H1 if
at least one of the Mk nodes has suggested H1.

To evaluate the detection performance at node k after this sec-
ond step, the Bahadur-Lazarsfeld expansion [11] is used to calculate
the probabilities of false alarm and detection considering correlation
among neighbors’ decisions ui, i ∈ Nk, made in the first step. Let
uk ∈ {0, 1}|Nk| be the local decisions of the neighborhood Nk.

The expressions of Pf,k,2 and Pd,k,2 for the OR-fusion rule are then
given by

Pf,k,2 = 1− P (uk = [0, 0, . . . , 0]|H0) (4a)

Pd,k,2 = 1− P (uk = [0, 0, . . . , 0]|H1) (4b)

In order to write P (uk|Hh) in a convenient form, we need first
to normalize the binary random variables ui, i ∈ Nk, conditioned
on hypothesis Hh, h ∈ {0, 1}, as follows [11]:

z
h
i =

ui − P (ui = 1|Hh)√
P (ui = 1|Hh)[1− P (ui = 1|Hh)]

(5)

Thus, a general expression forP (uk|Hh), according to Bahadur-
Lazarsfeld, is [11]

P (uk|Hh) =
∏

i,j,l,... ∈ Nk

P (ui|Hh)

[
1 +

∑
i<j

ρ
h
ijz

h
i z

h
j +

∑
i<j<l

ρ
h
ijlz

h
i z

h
j z

h
l + . . .+ ρ

h
12...kz

h
1 z

h
2 . . . z

h
k

]
(6)

where ρh are the correlations of the normalized random variables
zhi , computed as ρhij...l = E[zhi z

h
j . . . zhl ], i, j, . . . , l ∈ Nk [11].

We note, with help of (5), that ρh are equivalent to the correlation
coefficients of the neighbors’ decisions ui conditioned on hypoth-
esis Hh. Also note in (6) that for the hypothesis H0 the term
P (ui = 0|H0) corresponds to (1− Pf,i,1), whereas for H1 the
term P (ui = 0|H1) is equal to (1− Pd,i,1).

Finally, with P (uk|Hh) calculated in (6), the performance of
the final two-step network can be evaluated in (4). Although only
local decisions of neighboring nodes are combined, each node i has
previously made its local decision ui after taking into account contri-
butions (the vector of test statistics yi) within its own neighborhood
Ni (see Section 2.1). Therefore this second step is, in the final anal-
ysis, a fusion of information among neighborhoods.

3. ADAPTIVE WEIGHT UPDATE ALGORITHM

The linear combination in (1) must be done in such a way that it
guarantees desired probabilities of false alarm and detection in (3).
Therefore detector performance at first step depends on both the set
of weights and the threshold chosen. Quan et al. proposed in [3]
that obtaining these optimal parameters can be treated as an uncon-
strained optimization problem of (3b) for a given desired probabil-
ity of false alarm in (3a). This technique, referred to herein as op-
timal linear fusion, offers performance comparable to the optimal
likelihood-ratio test (LRT) rule, but its solution is not trivial [3].

An alternative (suboptimal) approach is based on the observation
that the sum of energy estimates obtained at node k in each instant
n varies around the sum of their means under both hypotheses. This
can be viewed as an optimization problem for minimizing

E[e2k] = E[(rk −w
T
kyk)

2] (7)

the mean squared error (MSE) between the local test statistic T (yk)
and a reference signal, defined as

rk =

{
1T

μk,0, for H0

1T
μk,1, for H1

(8)

where 1 is the Mk × 1 vector with all elements equal to 1.
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Fig. 2. Proposed structure of an adaptive combiner at node k and
instant n.

In order to minimize iteratively the MSE function given in (7),
the least-mean squares (LMS) algorithm is used [12]. For the pro-
posed adaptive combiner, the LMS algorithm can be summarized as

T (yk[n]) = w
T
k[n]yk[n] (9)

ek[n] = rk[n]− T (yk[n]) (10)

wk[n+ 1] = wk[n] + 2μek[n]yk[n] (11)

Moreover, the feasibility on achieving statistical information (μ
and Σ) about neighbors’ estimates [9] allows the node k to find the
optimum instantaneous threshold γk[n] with the actual weight vector
wk[n],

γk[n] = w
T
k[n]μk,0 +Q

−1(ε)
√

wT
k[n]Σk,0wk[n] (12)

and thus perform an online hypothesis testing with T (yk[n]) to
reach uk[n], according to (1). Note that the algorithm is capable
of make decisions at each iteration step without the need to wait un-
til convergence has taken place. Furthermore, the threshold γk[n]
is estimated such that it guarantees a fixed predefined probability of
false alarm, Pf,k,1 = ε, at each iteration [4].

We would like to emphasize that the algorithm minimizes an
objective function different of that for optimal linear fusion in [3].
This proposed structure is simple, a good feature for a scenario in
which every node (not only a fusion center) performs soft combi-
nation. Moreover, it provides online decisions and iterative weight
adaptation under dynamic channel environments [4].

3.1. Generating an Estimate of Reference rk

The exact reference signal rk[n], as modeled in (8), is not available
since achieving the precise information about H0 or H1 at each in-
stant is the main purpose of spectrum sensing systems. To obtain a
sufficiently accurate estimate r̂k[n], we use the structure depicted in
Fig. 2. According to this structure, during the first step, each node
not only processes an energy estimate, yi, but also makes a binary
decision, di, employing a local hypothesis testing with its individual
test statistic, as described in [13]. Both data are then shared among
neighbors.

For the neighborhood Nk, the node k collects the vector
of estimates yk, which is fed into an adaptive filter employ-
ing the LMS algorithm and the vector of individual decisions
dk = [d1, d2, . . . , dk]

T used to estimate the reference rk through
an OR-logic fusion rule (see Fig. 2). If the output of the OR-logic
is 0 (H0), then r̂k = 1T

μk,0; otherwise, if the output is 1 (H1),
r̂k = 1T

μk,1. The drawback of this approach is that the individ-
ual thresholds for obtaining the binary decisions di of each node

should be carefully chosen to guarantee a good r̂k for the LMS to
converge. This is a difficult task in cases of estimates yi with low
signal-to-noise (SNR) ratio.

4. RESULTS AND DISCUSSION

In this section, we evaluate the detection performance of the pro-
posed structure. We assume that H0 and H1 occur with equal prob-
ability. Comparisons are made between centralized and distributed
schemes under both uncorrelated and correlated node contributions.
The 12-node network topology shown in Fig. 1 is used in the simu-
lations, with twelve different neighborhoods. A total of 105 samples
(Gaussian energy estimates) were generated for each node, accord-
ing to the statistical model for yi proposed in [9]. For the uncorre-
lated case, the covariance matrices Σk,0 and Σk,1 are identity ma-
trices for all k. For the correlated case, it is assumed

E[(yi − μi,h)(yj − μj,h)] = 0.5

where i and j are index of spatially adjacent nodes (not necessarily
belonging to a same neighborhood), and μi,h(μj,h) is the mean of
the random variable yi(yj ) under hypothesis Hh, h ∈ {0, 1}.

In order to compare both centralized and distributed schemes,
each neighborhood in Fig. 1 performs only the first step described
in Section 2.1 to simulate the centralized case, whereas the full two-
step procedure is considered for simulating the distributed case. In
the first step, every neighborhood runs an LMS algorithm with step
size μ = 1 × 10−5 for the simulation with uncorrelated samples,
and μ = 2 × 10−5 for the simulation with correlated samples, in
order to achieve equal quality of convergence for both cases. The
LMS performance is also compared to the optimal linear fusion rule
described in [3].

The resulting complementary receiver operating characteristic
(C-ROC) curves of two particular nodes (nodes 4 and 9) are pre-
sented in the following. The neighborhood N4 is composed of nodes
4, 5, 6 and 9, with individual SNR ratios equal to −1.94 dB, 0 dB,
1.58 dB and 5.1 dB, respectively (according to the expression for
individual SNR in [3]). Fig. 3 shows the detection performance of
node 4 after employing single detection, centralized (1-step) and dis-
tributed (2-step) cooperation within neighborhood N4, where energy
estimates are uncorrelated throughout the network. We see that both
cooperative structures outperform the single detector, and the per-
formance obtained with adaptive combiner is close to that achieved
with optimal linear fusion. The proposed two-step distributed de-
tection structure also offers better performance than the centralized
scheme.
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Fig. 3. C-ROC performance at node 4 employing single detec-
tion, centralized (1-step) and distributed (2-step) cooperation within
neighborhood N4: uncorrelated case.
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Fig. 4. C-ROC performance at node 4 employing single detec-
tion, centralized (1-step) and distributed (2-step) cooperation within
neighborhood N4: correlated case.

Fig. 4 plots the C-ROC curves for node 4 for the case of cor-
related energy estimates. We can see the performance degradation
due to the correlation between the adjacent nodes. In particular, the
performance of the proposed two-step combiner is highly dependent
of the correlation coefficients ρh among the neighbors’ binary deci-
sions (see (6)). If there is a correlation among nodes’ soft contribu-
tions yi, this correlation will also appear among their hard contribu-
tions ui, degrading the two-step system performance.

The neighborhood N9 is composed of nodes 3, 4, 7 and 9, and
their individual SNR ratios are −4.47 dB, −1.94 dB, 2.92 dB and
5.1 dB, respectively. The detection performance comparisons for
the node 9 under uncorrelated and correlated node estimates are pre-
sented in Fig. 5 and Fig. 6, respectively. We can verify from both
figures the good performance of the adaptive combiner when com-
pared to that of the optimal linear combiner. In this neighborhood,
the proposed two-step distributed structure offers a more pronounced
performance improvement compared to N4. This is because the
neighbors in N9 are more spatially distributed, i.e., there will be
less correlation between neighbors in N9 than in N4.

5. CONCLUSION

This paper proposed a distributed two-step combining for coopera-
tive spectrum sensing purposes. A good estimate of a reference sig-
nal through conventional OR-fusion rule allows the employment of
an online adaptive linear fusion, a suboptimal but simple alternative
to the optimal linear fusion rule.
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Fig. 5. C-ROC performance at node 9 employing single detec-
tion, centralized (1-step) and distributed (2-step) cooperation within
neighborhood N9: uncorrelated case.

10,80,60,40,20

10
−4

10
−3

10
−2

10
−1

10
0

Pf

1 
−

 P
d

Node 9 (single)
Adaptive (1−step)
Optimal (1−step)
Adaptive (2−step)
Optimal (2−step)

Fig. 6. C-ROC performance at node 9 employing single detec-
tion, centralized (1-step) and distributed (2-step) cooperation within
neighborhood N9: correlated case.

Other recent works have proposed algorithms for adaptive coop-
eration among nodes, but in a centralized scheme. Results showed
that the suggested two-step distributed structure can improve the per-
formance of cooperative spectrum sensing networks, especially in
neighborhoods with low correlation among nodes’ contributions.
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