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ABSTRACT

The performance of channel estimation is often assessed by deriving
the proper Cramér-Rao Bound (CRB). Depending on how to treat the
symbols and the channel, we have previously derived different ver-
sions of CRB. Specifically, we have dealt with the cases where the
symbols and/or the channel are assumed to be either deterministic
unknowns or random. Moreover, the symbols have been considered
to be either jointly estimated with the channel or marginalized. All
in all, we have derived six different versions of Bayesian and deter-
ministic CRBs. However, we have shown that many of these CRBs
are too optimistic in the sense that they are not strict enough to be
attained by any deterministic or Bayesian estimator. In this paper
we propose modified versions of those loose CRBs in the context of
SIMO FIR system that are valid at least in the moderate and high
SNR regimes. The analytical formulas for the lower bounds intro-
duced are validated by some Monte-Carlo simulations.

1. INTRODUCTION
Traditionally, the transmitter sends some known information to the
receiver to aid the latter in estimating the channel. However, in wire-
less communication the channel varies rapidly with time and as a
consequence more training sequence/pilots are required. This pro-
cess wastes a lot of bandwidth as a result of augmenting the trans-
mission rate to maintain the throughput. In the last two decades
a new branch of channel estimation has emerged focusing on ac-
complishing this task blindly i.e. without the need for a training
sequence. Nevertheless, most wireless standards that have evolved
during this period are still relying on the training sequence/pilots to
estimate the channel. This is due probably to the unsatisfactory re-
sults of the blind channel estimation algorithms. On the other hand,
some powerful channel estimation algorithms that take advantage
of both aforementioned techniques have been also developed dur-
ing the same era. These are known as semi-blind where a superior
performance is achieved although few training sequence/pilots are
transmitted. As usual the performance of these algorithms are lower
bounded by the most famous lower bound namely, CRB. In [1] we
have derived the CRBs that correspond to the different algorithms
elaborated in [2]. Unfortunately, many of these CRBs are shown to
be loose since they don’t take into consideration the coupling be-
tween the channel and the symbol estimates at the level of the Fisher
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Information Matrix (FIM). In this paper we propose modified ver-
sions of these CRBs that are tighter than those derived in [1]. We
will show analytically that these CRBs constitute valid lower bounds
in the moderate and high SNR regimes. This paper is organized as
follows: In section II we develop the SIMO FIR transmission sys-
tem model, while in section III we show a general framework that
permits the derivation of the different CRBs. In section IV we make
use of the framework developed in section III to derive the different
modified CRBs. In section V we conduct some Monte-Carlo sim-
ulations to pictorially compare different modified CRBs with their
corresponding estimators as well as with their corresponding tradi-
tional CRBs.

2. SIMO FIR TX SYSTEM MODEL

Consider a linear digital modulation over a linear channel with addi-
tive noise so that the received signal y(t) has the following form:

y(t) =
∑

k

h(t − kT )a(k) + v(t). (1)

In (1) a(k) are the transmitted symbols, T is the symbol period and
h(t) is the channel impulse response. The channel is assumed to be
FIR with length NT . If the received signal is oversampled at the rate
m
T

(or if m different samples of the received signal are captured by
m sensors every T seconds, or a combination of both), the discrete
input-output relationship can be written as:

y(k) =

N−1∑
i=0

h(i)a(k−i) + v(k) = HAN (k) + v(k) (2)

where y(k) = [yH
1 (k) · · · yH

m(k)]H , h(i) =
[
hH

1 (i) · · ·hH
m(i)

]H
,

v(k) = [vH
1 (k) · · · vH

m(k)]H , H = [h(N−1) · · ·h(0)], AN (k) =[
a(k−N+1)H · · · a(k)H

]H
and superscript H denotes Hermitian

transpose. Let H(z) =
∑N−1

i=0 h(i)z−i = [HH
1 (z) · · ·HH

m(z)]H be

the SIMO channel transfer function, and h =
[
hH(N−1) · · ·hH(0)

]H
.

Consider additive independent white Gaussian circular noise v(k)
with rvv(k−i) = E v(k)v(i)H = σ2

vIm δki. Assume we receive
M samples:

YM (k) = TM (h) AM+N−1(k) + V M (k) (3)

where YM (k) = [yH(k−M+1) · · ·yH(k)]H and similarly for
V M (k), and TM (h) is a block Toepltiz matrix with M block rows
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and [H 0m×(M−1)] as first block row. We shall simplify the
notation in (3) with k = M−1 to

Y = T (h) A + V = TK(h) AK + TU (h) AU + V

= AKh + AUh + V .
(4)

Where TK(h) and TU (h) represent respectively the portions of
T (h) that correspond to Ak (MK known symbols) and AU (MU

unknown symbols), see Figure 5 in [1]. On the other hand, A is a
block Toeplitz matrix filled with the elements of A while AK and
AU are block Toeplitz matrices filled with the elements of AK and
AU respectively. Here we assume for simplicity that the known
symbols are gathered at the beginning of the block.

3. A UNIFIED FRAMEWORK FOR DIFFERENT CRBS

We have presented in [1] a complete framework that permits the han-
dling of the different cases of the channel and the symbols estima-
tion. Here we shall present briefly the main results. In [1] the differ-
ent estimation cases have been classified into two main categories.
In the first category the channel and the unknown symbols are esti-
mated jointly by making some assumptions on the channel and the
unknown symbols. If we denote by θ the unknown parameters to be
estimated then it is given by:

θ = [AH
U , hH ]H (5)

Applying the log function to the joint probability density function
(pdf), we get [1]:

ln[f(Y, AU , h)] = ln[f(Y/AU , h)] + ln[f(AU )] + ln[f(h)] (6)

where f(Y, AU , h) and f(Y/AU , h) denote respectively the joint
and conditional pdf. Now, let J represents the Fisher Information
matrix (FIM), it is given by [3]:

Jθθ = E

(
∂ ln[f(Y, AU , h)]

∂θ∗

)(
∂ ln[f(Y, AU , h)]

∂θ∗

)H

= −E
∂

∂θ∗

(
∂ ln[f(Y, AU , h)]

∂θ∗

)H

(7)
As we shall observe later, since we are treating complex parameters
we also need, besides Jθθ , Jθθ∗ which is defined by:

Jθθ∗ = E

(
∂ ln[f(Y, AU , h)]

∂θ∗

)(
∂ ln[f(Y, AU , h)]

∂θ

)H

= −E
∂

∂θ

(
∂ ln[f(Y, AU , h)]

∂θ∗

)H

(8)
When Jθθ∗ �= 0 we shall resort to θR defined below:

θR =

[
Re(θ)
Im(θ)

]
= M

[
θ
θ∗

]
,M =

1

2

[
I I

−jI jI

]
(9)

Knowing that Jθθ = J∗
θ∗θ∗ and Jθθ∗ = J∗

θ∗θ then (9) yields:

JθRθR
= M

[
Jθθ Jθθ∗

J∗
θθ∗ J∗

θθ

]
MH (10)

On the other side, when Jθθ∗ = 0 then JθRθR
is defined totally by

Jθθ . This holds true for all the cases where we jointly estimate the
channel and the symbols as we shall notice later. Under some as-
sumptions and regularity conditions [4], the error covariance matrix
of an unbiased channel estimator ĥ(Y ), which is defined as:

C(ĥ) = E

{[
ĥ(Y ) − h

] [
ĥ(Y ) − h

]H
}

(11)

satisfies the following inequality:

C(ĥ) ≥ {JθRθR
}−1 �

= CRB (12)

We usually focus on comparing the Mean Square Error, MSE =

tr
{

C(ĥ)
}

to the minimum error variance which is defined by

tr {CRB} where tr stands for the trace of a matrix. However, in
the second category the channel and the noise variance are the only
parameters to be estimated while the symbols are supposed to be
marginalized during the estimation process.

θ = [hH , σ2
v]H (13)

Again, when we apply the log function to the joint pdf, we get:

ln[f(Y, h, σ2
v)] = ln[f(Y/h, σ2

v)] + ln[f(h)] + ln[f(σ2
v)] (14)

As for FIM, both (7) and (8) are still applicable where only θ is
redefined as in (13).

4. DERIVATIONS OF MODIFIED CRBS

We have derived in [1] six different Bayesian and deterministic
CRBs. Four out of those six CRBs are shown to be loose. We shall
develop in this section modified versions of those loose CRBs. This
will be done by exploiting the framework introduced in the previous
section. For explanation on the way by which we call the different
CRBs, we refer the reader to [1]. As we have observed in (7) and
(8), there is an expectation operator in the definition of the FIM.
When both the channel and the unknown symbols are deterministic,
this expectation operator can be written as EY/A,h. In this case
the expectation means averaging over the noise which is the only
random vector. However, when either the channel or the unknown
symbols or even both of them are considered as random, the ex-
pectation operator means averaging over the different realizations
of the noise, the channel and the unknown symbols. Therefore, the
expectation operator becomes as follows (Baye’s Theorem):

EY,h/AU
= EY/AU ,h Eh (h is random).

EY,AU /h = EY/AU ,h EAU
(AU is random).

EY,h,AU
= EY/AU ,h Eh EAU

(h and AU are random).

(15)
As we have noticed in [1], the deficiency of the traditional Bayesian
and deterministic CRBs is a direct consequence of the implemen-
tation of Eh and/or EAU

in the FIM formulas. Specifically, these
expectations make the channel and the unknown symbols estimates
decoupled although in reality they are coupled. Our main idea is to
postpone the implementation of these expectation operators so that
we compute the inverse of the FIM first then we apply them in the
second step to get the modified CRB. Based on this introduction, the
question now, does this modified CRB still constitute a lower bound
for the channel estimate? Another question that poses itself, is there
any proof that this modified CRB is tighter than the traditional one?
To address the first question, we note that the main drawback of post-
poning the implementation of the expectation operators ( Eh and/or
EAU

) is that our modified CRBs would correspond to estimators that
should be unbiased for every channel and/or unknown symbols real-
izations.

When both the channel and the symbols are considered as de-
terministic unknowns (see SB-ML-ML in [2]), the channel estimate
has been traditionally considered as unbiased. However, in [5] it
has been shown that the unbiasedness doesn’t hold at low SNR!
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As a consequence, even the traditional CRB is no longer a valid
lower bound in this SNR regime. Moreover, theoretically once the
channel and/or the symbols are considered as random, the chan-
nel estimate should be biased even at high SNR due to the usage
of the prior information of the channel and/or the unknown sym-
bols. However, as our simulations have shown, the bias is negli-
gible at moderate and high SNR. This encourages us to proceed in
our idea since now J−1

hh (where EY/A,h is used instead of EY,A/h,
EY,h/A and EY,A,h) can be considered as a valid lower bound for
every channel and/or unknown symbols realization. This is true
at least in the moderate and high SNR regimes. Hence, we have
C(ĥ) ≥ J−1

hh . Now if apply the expectation operators on both sides
we get Eh EAJ−1

hh ≥ Eh EAC(ĥ). In other words, the modified
CRB is a valid lower bound for the mean of the channel estimation
error. The mean here is computed by averaging over the different
channel and symbols realizations. As for answering the second ques-
tion raised above, we need to prove that EJ−1

hh ≥ {EJhh}
−1. In [6]

it has been shown after a tedious derivation that for any positive def-
inite matrix B we have:

tr
(

E
{
[B]−1}) ≥ tr

(
[ E {B}]−1) (16)

However, we will present here a much simpler proof that this in-
equality holds also without the trace operator. Suppose we have a

matrix which is formed as G = [B
H

2 B
−1

2 ]H, the inner prod-
uct of this matrix is given by < G,G > = E GG

H ≥ 0 where
the inequality stems from the non degeneracy property of the inner
product [7]. Developing the inner product yields:

E

[
E B I
I E B

−1

]
≥ 0 (17)

Now applying the Schur’s complement we get: E B−
(

E B
−1

)−1
≥

0 ⇒ E B ≥
(

E B
−1

)−1
⇒ E B

−1 ≥ ( E B)−1. It is obvious
now that (16) follows directly. Hence, we can allege that our modi-
fied Bayesian and deterministic CRBs that are based on inverting the
matrix first then applying the expectation operators are tighter than
the traditional ones. This fact is going to be elaborated in the se-
quel where the formulas of the modified Bayesian and deterministic
CRBs are derived.

4.1. DCRBsto,joint and MDCRBsto,joint

This estimator also belongs to the first category, thus the joint pdf is

given by (6). Moreover, f(AU ) = 1

(πσ2
a
)M+N−1−MK

exp[−
AH

U
AU

σ2
a

]

and f(h) = hoδ(h − ho). It is obvious here that ln[f(h)] can be
omitted without affecting the computation of FIM. Hence, (7) and
(15) yield:

Jθθ = EAU

1

σ2
v

[
T H

U (h)TU (h) +
σ2

v

σ2
a

IMU
T H

U (h)A

AHTU (h) AHA

]
(18)

Furthermore, we can write Jθθ = EAU
B where B denotes the

matrix in the square brackets in (18) multiplied by the inverse
of the variance of the noise. Denoting EAU

{A} = A
′

K and
EAU

{
AHA

}
= CK where Ck = A

′H
K A

′

K + MUσ2
aImN and not-

ing that Jθθ∗ = 0, then by inverting Jθθ in (18) which is composed
of four blocks, we get again a matrix composed of four blocks.
DCRBsto,joint is given by the block in the lower right corner of

that matrix:

DCRBsto,joint = σ2
v

(
CK −A

′H
K TU (h)

[T H
U (h)TU (h) +

σ2
v

σ2
a

I]−1T H
U (h)A

′

K

)−1

(19)

Now, if we follow the discussion presented in section IV, the modi-
fied version of this CRB (MDCRBsto,joint) is given by the block
in the lower right corner of EAU

B−1.

MDCRBsto,joint = EAU
σ2

v(
AH

(
I − TU (h)[T H

U (h)TU (h) +
σ2

v

σ2
a

I]−1T H
U (h)

)
A

)−1

(20)

4.2. BCRBsto,joint and MBCRBsto,joint

In this lower bound both the channels and the unknown symbols are
assumed random with Gaussian distribution and are supposed to be
estimated jointly. Hence, this lower bound in its turn belongs to the
first category and its joint pdf is given by (6). By substituting the
terms in (6) by their corresponding functions and make use of (15),
we deduce the corresponding FIM as follows:

Jθθ = Eh EAU

1

σ2
v[

T H
U (h)TU (h) +

σ2
v

σ2
a

IMU
T H

U (h)A

AHTU (h) AHA + σ2
vCo−1

h

]
(21)

However, we can write Jθθ = EAU
Eh B where B denotes the ma-

trix in the square brackets in (21) multiplied by the inverse of the
variance of the noise. Assuming that both the channel and the un-
known symbol distributions have a zero mean as stated above, we
get [1]:

BCRBsto,joint = σ2
v

(
CK + σ2

vCo−1

h

)−1

(22)

For the reasons discussed in [1], this CRB is considered to be too
optimistic. Once again here following the discussion presented in
section IV, the modified version of this CRB (MBCRBsto,joint) is
given by the block in the lower right corner of EAU

EhB−1.

MBCRBsto,joint = EAU
Eh σ2

v

(
AHA + σ2

vCo−1

h −

AHTU (h)

[
T H

U (h)TU (h) +
σ2

v

σ2
a

I

]−1

T H
U (h)A

)−1

(23)

4.3. BCRBdet,joint and MBCRBdet,joint

In this lower bound we consider the unknown symbols to be deter-
ministic unknowns while the channel is considered to be random
with Gaussian distribution, f(h) = 1

(π)mN |Co

h
|
exp[−hHCo−1

h h].

However, the unknown symbols are considered as deterministic to
be jointly estimated with the channel hence, this estimator belongs
to the first category where the joint pdf is given by (6). Moreover,
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here again ln[f(AU )] has no effect on computing FIM so it can be
omitted. Therefore, (7) and (15) yield:

Jθθ = EAU

1

σ2
v

[
T H

U (h)TU (h) T H
U (h)A

AHTU (h) AHA + σ2
vCo−1

h

]
(24)

Again, we can write Jθθ = Eh B where B denotes the matrix in the
square brackets in (24) multiplied by the inverse of the variance of
the noise. Assuming that the channel distribution has a zero mean as
stated above we get:

BCRBdet,joint = σ2
v

(
AHA + σ2

vCo−1

h

)−1

(25)

This CRB is also too optimistic [1]. Once again here following the
discussion presented in section IV , the modified version of this CRB
(MBCRBdet,joint) is given by the block in the lower right corner
of EhB−1.

MBCRBdet,joint = Ehσ2
v

(
AHA + σ2

vCo
h
−1−

AHTU (h)
[
T H

U (h)TU (h)
]−1

T H
U (h)A

)−1

(26)

4.4. BCRBsto,marg and MBCRBsto,marg

This lower bound belongs to the second category since the symbols
are supposed to be eliminated. The joint pdf is given by (14) but
this time ln[f(h)] can’t be omitted. Substituting the terms in (14)
by their corresponding functions and following the same steps men-
tioned in DCRBsto,marg in [1] section IV, we get:⎧⎨⎩ Jθθ = Eh

{
Jsto

θθ

}
+

[
Co−1

h 0
0 0

]
Jθθ∗ = Eh

{
Jsto

θθ∗

} (27)

where Jsto
θθ denotes the FIM that correspond to DCRBsto,marg

in [1]. Now we can resort to (10) to compute JθRθR
. Conse-

quently, we can extract easily BCRBsto,marg from J−1
θRθR

. As
for MBCRBsto,marg , we make use of the modified versions of
Jθθ and Jθθ∗ in (27). This modification stems from postponing the
implementation of Eh. After that we proceed in the same way as in
the case of BCRBsto,marg and compute the modified J−1

θRθR
. Now,

MBCRBsto,marg follows directly from Eh J−1
θRθR

.

5. SIMULATIONS
The goal of this section is to validate numerically the ideas presented
throughout this paper. In each Monte-Carlo simulation we generate
different realizations of the noise and when required for the channel
and the symbols too. As for the channel, we generate a Rayleigh fad-
ing channel with a constant power delay profile (PDP). Specifically,
Co

h is an identity matrix. As for the symbols, we generate random
8PSK symbols to reflect the real world case. The performance of
the different CRBs is evaluated by means of the Normalized MSE

(NMSE) vs. SNR. The SNR is defined as: SNR = ||T (h)A||2

mM σ2
v

. The

NMSE is defined as avg tr (CRB)

avg ||h||2
where avg stands for average. In

figure 1, we plot the square norm of the bias (||h − EY/AU ,h ĥ||2)
versus SNR for different semi-blind channel estimators presented in
[2]. It is worthy noting that in this plot only one randomly chosen
channel and unknown symbols realization has been generated. How-
ever, the Monte-Carlo simulations have been run over 100 noise real-
izations. The bias of SB-ML-ML which has been thought generally

as unbiased can be used as a reference. As we have indicated before,
we remark that at moderate and high SNR the biases for all estima-
tors are almost negligible whereas at low SNR they are prominent.
In the subfigures of figure 2, we plot the traditional Bayesian and
deterministic CRBs along with their modified versions elaborated in
section IV. Furthermore, we plot also in the same figures the NMSE
for their corresponding semi-blind channel estimators presented in
[2]. It is obvious that our modified CRBs are tighter than their tra-
ditional versions. Moreover, our modified CRBS are attainable by
their corresponding estimators at high SNR. Another remark can be
drawn from these plots namely, our modified CRBs match with their
traditional versions at very low SNR.
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Fig. 2. NMSE vs SNR for different traditional and modified CRBs along
with their corresponding estimators.
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