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ABSTRACT

The CRB is a lower bound of great interest for system anal-

ysis and design in the asymptotic region (high SNR and/or

large number of snapshots), as it is simple to calculate and

it is usually possible to obtain closed form expressions. It is

from this perspective that the paper highlights, by means of

a classical radar estimation problem, two results useful for

system analysis and design: a reparameterization inequality

and the equivalence between reparameterization and equality

constraints.

Index Terms— Parameter estimation, Cramer–Rao bounds

1. INTRODUCTION

Minimal performance bounds allow for calculation of the best per-
formance that can be achieved in the Mean Square Error (MSE)
sense, when estimating parameters of a signal corrupted by noise.
Historically the first MSE lower bound for deterministic parameters
to be derived was the Cramér-Rao Bound (CRB), which was intro-
duced to investigate fundamental limits of a parameter estimation
problem or to assess the relative performance of a specific estimator
(efficiency) [1]. It has since become the most popular lower bound
due to its simplicity of calculation, the fact that in many cases it can
be achieved asymptotically (high SNR and/or large number of snap-
shots) by Maximum Likelihood Estimators (MLE) , and last but not
least, its noticeable property of being the lowest bound on the MSE
of unbiased estimators, since it derives from local unbiasedness
at the vicinity of any selected value of the parameters. This initial
characterization of locally unbiased estimators has been significantly
generalized by Barankin work [2][3], who established the general
form of the greatest lower bound on MSE (BB) for uniformly un-
biased estimators, which is unfortunately incomputable analytically
in general. Therefore, since then, numerous works detailed in [2][3]
have been devoted to deriving computable approximations of the
BB and have shown that the CRB and the BB can be regarded as
key representatives of two general classes of bounds, respectively
the Small-Error bounds and the Large-Error bounds. These works
have also shown that in non-linear estimation problems three distinct
regions of operation can be observed. In the asymptotic region, the
MSE is small and, in many cases, close to the Small-Error bounds.
In the a priori performance region where the number of independent
snapshots and/or the SNR are very low, the observations provide lit-
tle information and the MSE is close to that obtained from the prior
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knowledge about the problem. Between these two extremes, there
is an additional ambiguity region, also called the transition region.
In this region, the MSE of MLEs usually deteriorates rapidly with
respect to Small-Error bounds and exhibits a threshold behaviour
corresponding to a ”performance breakdown”. Small-Error bound
such as the CRB are not able to handle the threshold phenomena,
whereas it is revealed by Large-Error bounds that can be used to
predict the threshold value. Unfortunately, Large-Error bounds
closed form expressions hardly ever exist and, even when they exist,
each Large-Error bound requests the search of an optimum over
a set of test points, leading to a computational cost prohibitive in
most applications. Therefore, provided that one keeps in mind the
CRB limitations, that is, to become an excessively optimistic lower
bound when the observation conditions degrade (low SNR and/or
low number of snapshots), the CRB is still a lower bound of great
interest for system analysis and design in the asymptotic region.
It is from this perspective that the paper is devoted to highlight two
technical results derived in [4] useful for system analysis and design
in the asymptotic region: the general reparameterization inequality
and the equivalence between parameterization change and equality
constraints.
As an application example, we consider the very well-known prob-
lem of delay and velocity estimation with an active radar where a
known waveform is transmitted. Typically, the received signals are
modelled as scaled, delayed, and Doppler-shifted versions of the
transmitted signal [5].

2. CRAMÉR-RAO BOUND FOR MIXED (REAL AND
COMPLEX) PARAMETERS

The notational convention adopted is as follows: a, a, A indi-
cates respectively a scalar, a vector and a matrix quantity. The
matrix/vector conjugate is indicated by a superscript ∗ and the ma-
trix/vector transpose conjugate is indicated by a superscript H . x
denotes:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x = x if x ∈ RQ

x =

(
x
x∗

)
if x ∈ CQ\RQ

(
xc

xr

)
=

⎛⎝ xc

x∗
c

xr

⎞⎠ if xc ∈ CQ \ RQ, xr ∈ RQ′
. (1)

MC (N,P ) denotes the vector space of complex matrices with

N rows and P columns. If θ = (θ1, θ2, . . . , θP )
T

, then: ∂
∂θ

=(
∂

∂θ1
, ∂
∂θ2

, . . . , ∂
∂θP

)T

. � denotes the Hadamard product. ⊗ de-

notes the Kronecker product. 1 (x) denotes the constant real-valued

3545978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



function equal to 1.
Regarding the definition of Hermitian product 〈 | 〉, we adopt the
convention used in books of mathematics [6] where a sesquilin-
ear form is a function in two variables on a complex vector
space U which is linear in the first variable and semi-linear in
the second. This convention allows to define the Gram ma-

trix G
(
{u}

[1,Q]
, {c}

[1,P ]

)
(P × Q complex matrix) associated

to 2 families of vectors of U, {u}
[1,Q]

= {u1, . . . ,uQ} and

{c}
[1,P ]

= {c1, . . . , cP } as the one verifying [6]:〈
Q∑

q=1

xquq |
P∑

p=1

ypcp

〉
= yHG

(
u

[1,Q]
, c

[1,P ]

)
x (2)

where x = (x1, . . . , xQ)
T ,y = (y1, . . . , yP )

T
. For notational

convenience G
(
{u}

[1,Q]

)
= G

(
{u}

[1,Q]
, {u}

[1,Q]

)
. Beware

that most reference signal processing books [1] adopt the opposite
convention for sesquilinear form, that is to be semi-linear in the first
variable and linear in the second. As a consequence, the equivalent
form in ”signal processing notation” of any inequality introduced in
the present paper is obtained by transposing inequality terms (matri-
ces).
Unless otherwise stated, x denotes the random observation vector of
dimension N , Ω denotes the observations space and L2 (Ω) denotes
the complex Hilbert space of square integrable functions over Ω.
The probability density function (p.d.f.) of x is denoted p (x;θ) and
depends on a vector of P real parameters θ = (θ1, . . . , θP ) ∈ Θ,
where Θ denotes the parameter space. Additionally, we assume that
the observation vector x corresponds to a parametric observation
model involving Pr ≥ 0 real unknown parameters (delays, direc-
tions of arrival, ...) and Pc ≥ 0 complex unknown parameters (spa-
tial transfer functions components, complex amplitudes, ...) where
2Pc + Pr = P , leading to a p.d.f. of the dual form:

p (x;θ) , θ =
(
Re

{
θTc

}
, Im

{
θTc

}
,θTr

)T

(3)

p (x;θ) , θ =
(
θTc , (θ

∗
c)

T
,θTr

)T

(4)

In the following we will only consider the form (4) since it in-
cludes (3) when Pc = 0. Let θ0 be a selected value of the pa-

rameter θ, and ĝ
(
θ0
)
(x) an estimator of g

(
θ0
)

where g (θ) =

(g1 (θ) , . . . , gQc (θ) , gQc+1 (θ) , . . . , gQ (θ))T is a vector of Q
functions of θ, the first Qc ones being complex-valued functions, the
last Qr = Q−Qc being real-valued functions, where Qc ∈ [0, Q].
Then, the statistical performance of any estimator of g

(
θ0
)

is fully
characterized - including characterization of real and imaginary
parts [4] - in the MSE sense, by the computation of:

MSEθ0
[
δT ĝ

(
θ0
)
(x)

]
=
∫
Ω

∣∣∣δT (ĝ (θ0) (x)− g
(
θ0
))∣∣∣2 p (x;θ0) dx,

which is a norm deriving from an Hermitian product 〈 | 〉θ0 :

MSEθ0
[
δT ĝ

(
θ0
)
(x)

]
= δHGθ0

({
ĝ
(
θ0
)
(x)− g

(
θ0
)})

δ

(5)

〈g (x) | h (x)〉θ = Eθ [g (x)h
∗ (x)]

where:

{h (x)} = {h1 (x) , . . . , hQ (x)} (6)

denotes a family of vectors which elements are the vector compo-

nents. The problem of finding a lower bound of Gθ0

(
{u}

[1,Q]

)
,

{u}
[1,Q]

=
{
ĝ
(
θ0
)
(x)− g

(
θ0
)}

, in (5) for locally unbiased es-

timators, amounts to the minimization of Gθ0

(
{u}

[1,Q]

)
(with re-

spect to the Löwner ordering [6, §7.7]) under a set of linear con-
straints, which solution is a standard algebra result [4]:

min
{
Gθ0

(
{u}

[1,Q]

)}
=

(
∂g

(
θ0
)T

∂θ

)H

F−1
θ0

∂g
(
θ0
)T

∂θ
(7)

Fθ0 = Eθ0

[
∂ ln p (x;θ)

∂θ

∂ ln p (x;θ)

∂θ

H]
(
ĝ
(
θ0
)
(x)− g

(
θ0
))T

eff
=

∂ ln p (x;θ)

∂θ

H

F−1
θ0

∂gT
(
θ0
)

∂θ

where CRBθ0 = F−1
θ0

and Fθ0 is the Fisher Information Matrix

(FIM).

2.1. Reparameterization and constraints: duality and a major
inequality

Let us define the following notation convention:

CRBg|θ
(
θ0
)
=

(
∂g(θ0)T

∂θ

)H

CRBθ|θ
(
θ0
) ∂g(θ0)T

∂θ

CRBθ|θ
(
θ0
)
= F−1

θ0

(8)

and consider the problem of estimating h (ω) = g (θ (ω)), where
θ (ω) is an injective reparameterization of the p.d.f. p (x;θ) for the
unknown parameters θ (dim {θ} = P ):

θ = θ (ω) , dim {ω} = P ′ = rank

(
∂θ

(
ω0
)

∂ωT

)
, P ′ ≤ P.

According to (7), the CRB associated to any locally unbiased esti-
mator of h

(
ω0
)
= g

(
θ
(
ω0
))

is given by:

CRBh|ω
(
ω0) =

(
∂h

(
ω0
)T

∂ω

)H

CRBω|ω
(
ω0) ∂h (ω0

)T
∂ω

CRBω|ω
(
ω0) = F−1

ω0

or equivalently by (by use of the derivation chain rule identity):

CRBh|ω
(
ω0
)
=

(
∂g(θ(ω0))T

∂θ

)H

CRBθ|ω
(
ω0
) ∂g(θ(ω0))T

∂θ

CRBθ|ω
(
ω0
)
=

(
∂θ(ω0)T

∂ω

)H

F−1
ω0

(
∂θ(ω0)T

∂ω

)
Fω0 =

∂θ(ω0)T

∂ω
Fθ(ω0)

(
∂θ(ω0)T

∂ω

)H

(9)
and satisfies the reparameterization inequality introduced in [4]:

CRBg|θ
(
θ
(
ω0)) ≥ CRBh|ω

(
ω0) = CRBg(θ)|ω

(
ω0)

(10)

The reparameterization inequality (10) expresses analytically a quite
intuitive estimation principle: when the total number of unknown pa-
rameters decreases in an observation model (P ′ < P ), the asymp-
totic quality of estimation increases (or remain unchanged), in the
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sense that the CRB decreases (or remain equal), whatever the func-
tion g ( ) of the unknown parameters considered. If P ′ = P , then
the reparameterization has no effect on the asymptotic quality of es-
timation since then CRBθ|θ

(
θ
(
ω0
))

= CRBθ|ω
(
θ
(
ω0
))

. Ad-
ditionally, as shown in [4], regarding the computation of the CRB,
equality constraints on parameters: f (θ) = 0 ∈ CK , 1 ≤ K ≤ P ,
is a particular case of the reparameterization of the unknown pa-
rameters θ, provided that the set of constraints is not redundant.
Then, the reparameterization inequality (10) holds provided that in

(9)
∂θ(ω0)
∂ωT ≡ Uθ0 where Uθ0 ∈ MC (P, P −K) is a basis of

ker

{
∂f(θ0)
∂θT

}
. Uθ0 can always be computed - after rearrangement

of θ - as:

Uθ0 =

⎡⎣ IP−K

−
(

∂f(θ0)
∂εT

)−1
∂f(θ0)
∂ωT

⎤⎦ , θ =

(
ω
ε

)
(11)

where ε is a subvector (subset) of K components of θ which K

columns of partial derivatives - columns of matrix
∂f(θ0)
∂θT

- are inde-

pendent.

3. RADAR ESTIMATION OF DELAY AND VELOCITY

3.1. CRB for active radar

For sake of legibility in the following, the dependency of vectors
and matrices of L2 (Ω), e.g. s (f ;θs), b (f ; εm), B (f ;Ξ) ..., on
frequency f will be omitted wherever this omission is unambiguous.
In radar, and many other practical problems of interest (radar, sonar,
communication, ...), the complex observation vector x consists of
a bandpass signal with bandwidth B

(
f ∈ [−B

2
, B

2

])
, which is the

output of an Hilbert filtering leading to an ”in-phase” real part asso-
ciated to a ”quadrature” imaginary part [1] i.e. a complex circular
vector of the form in the frequency domain:

x (f ;θ) = s (f ;θs) + n (f ;θn) , θT =
(
θTs ,θ

T
n

)
s (f ;θs) =

∑M
m=1 b (f ; εm)σm = B (f ;Ξ)σ

(12)

where θTs =
(
σT ,σH ,ΞT

)
, ΞT =

(
εT1 , . . . , ε

T
M

)
,σ = (σ1, . . . , σM )T

and:
• s (f ;θs) is the spectrum of the signal of interest consisting of M
backscattered signals function of a parametric propagation model
b (f ; εm) of finite duration T depending on K real parameters
εTm = (ε1,m, . . . , εK,m), and of a complex backscattered amplitude
σm constant during duration T ,
• n (f ;θn) is the spectrum of the nuisance signal consisting of noise
plus interference contribution depending on the parameters θn.
Under the assumption of Gaussian centred nuisance and unknown
a priori p.d.f. p (σ), (12) belongs to the set of deterministic obser-
vation models. Additionally, if n (f ;θn) is a wide sense stationary
(WSS) band limited process with spectral density matrix Γ (f,θn),
then for L independent observation of (12):

. xl (f ;θ) = B (f ;Ξ)σl + nl (f ;θn)

the CRB of the parameters Ξ of the M signals backscattered by the

M targets, whatever θn is known or unknown, is given by [7][8]:

BCR−1

Ξ|θ (θ) = 2Re
{
H

Ξ|θ (θ)�
(
ΣT

s ⊗ 1K×K

)}
(13)

H
Ξ|θ (θ) =

⎡⎢⎣ H (θ)1,1 . . . H (θ)1,M
...

. . .
...

H (θ)M,1 . . . H (θ)M,M

⎤⎥⎦ , Σs =
1

L

L∑
l=1

σl
(
σl
)H

H (θ)m1,m2
=

Gθn

(
Π⊥

{B(Ξ)}

({
∂b(εm2)

∂εT

})
,

Π⊥
{B(Ξ)}

({
∂b(εm1)

∂εT

}))
where 1P×P is a P × P matrix of ones and the Hermitian product

is: 〈x | y〉θn =

B
2∫

−B
2

y (f)H Γ (f,θn)
−1 x (f) df .

Π⊥
{B(Ξ)} denotes the orthonormal projector on the orthogonal com-

plement of span {B (f ;Ξ)}: Π{B(Ξ)} (a) + Π⊥
{B(Ξ)} (a) = a

where Π{B(Ξ)} (a) = B (Ξ)G−1
θn

({B (Ξ)})Gθn (a, {B (Ξ)}).

3.2. Estimation of delay and velocity

In the present paper we consider a radar system consisting of a 1-
element antenna array receiving scaled, timedelayed, and Doppler-
shifted echoes of a known complex bandpass signal eT (t) e−j2πfct,
where fc is the carrier frequency. The antenna receives a pulse train
(burst) of L pulses of width T0 and bandwidth B, with a pulse rep-
etition interval (PRI) T . Under the usual approximation in radar of
”slow” moving targets in comparison with eT (t), i.e. [5] :
• |2vm (L− 1)T | << c

B
(no range migration),

• 2vm
λc

T0 << 1 (Doppler effect on eT (t) is negligible),
the standard hypothesis of temporally white nuisance signal (ther-
mal noise) of power σ2

n and non fluctuating targets during the burst
duration, then (12) can be significantly simplified and becomes [5]:

xl (t;θ) =

M∑
m=1

eT (t− τm)σl
m + nl (t) (14)

σl
m = σmej2πωm(l−1)T , ωm =

−2vm
λc

(15)

Then:

Σs =
1

L

L∑
l=1

σl
(
σl
)H

=
(
σσH

)
�
(
ΨHΨ

)
(16)

Ψ = [. . . ψ (ωm) . . .] , ψ (ω) =
(
1, . . . , ej2πω(L−1)T

)T

Observation model (14) allows for a dual modeling of unknown tar-
get parameters according to whether the Doppler information is a
parameter of interest or not:
• the noncoherent observation model where the inter-observation
relationship containing the Doppler information (14) is not taken
into account. In this approach, the set of unknown parameters is
θT =

(
σT

1 ,σ
H
1 , . . . ,σT

L ,σ
H
L , τT , σ2

n

)
and the targets parameters

of interest reduce to the delays τ . Then, by application of (13):

BCR
τ|θ (θ) = Re

{
2H

τ|θ (θ)�
(
ΨTΨ∗

)
�
(
σTσ∗

)}−1

(17)
• the coherent observation model where the inter-observation
relationship containing the Doppler information (14) is taken
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into account. Then the set of unknown parameters is θ̃
T

=(
σT ,σH , τT ,ωT , σ2

n

)
and the targets parameters of interest are

the delays τ and the Doppler frequencies ω. Then, by application
of (13):

BCR(τ ,ω)|˜θ
(
θ̃
)
= Re

{
2H

(τ,ω)|˜θ

(
θ̃
)
�
((
σTσ∗

)
⊗ 12×2

)}−1

(18)

Expressions of H
τ|θ (θ) and H

(τ,ω)|˜θ

(
θ̃
)

are more legible if the

sampled version of (14) is considered:

. xl (i;θ) =
M∑

m=1

eT
(

i
B

− τm

)
σl
m + nl

(
i
B

)
We assume that the snapshots taken at i = 1 . . . I cover the
whole observation interval including all the timedelayed echoes
eT (t− τm), and let:

a (τ) =
[
. . . , eT

(
i
B

− τ
)
, . . .

]T
, A = [a (τ1) · · · a (τM )]

Da =
[
∂a(τ1)

∂τ
· · · ∂a(τM )

∂τ

]
, Dψ =

[
∂ψ(ω1)

∂ω
· · · ∂ψ(ωM )

∂ω

]
Then a few lines of straightforward calculus lead to:

H
τ|θ (θ) = DH

a Da −DH
a A

(
AHA

)−1
AHDa

H
(τ,ω)|˜θ

(
θ̃
)
=

[
H

τ|˜θ H
τ,ω|˜θ

HH

(τ,ω)|˜θ
H

ω|˜θ

]
(19)

where:

H
τ|˜θ = ΨHΨ�DH

a Da

−
(
ΨHΨ�DH

a A
)(

ΨHΨ�AHA
)−1 (

ΨHΨ�AHDa

)
H

τ,ω|˜θ = ΨHDψ�DH
a A

−
(
ΨHΨ�DH

a A
)(

ΨHΨ�AHA
)−1 (

ΨHDψ�AHA
)

H
ω|˜θ = DH

ψDψ�AHA

−
(
DH
ψΨ�AHA

)(
ΨHΨ�AHA

)−1 (
ΨHDψ�AHA

)
Due to the presence of the Hadamard and Kroneker products, it is
impossible to compare (with respect to the Löwner ordering) directly

BCR
τ|θ (θ) and BCRτ |˜θ

(
θ̃
)

(obtained by matrix inversion in

block form). Therefore, so far (to the best of our knowledge) it has
been impossible to answer to the following question:
if one is only interested in the delay estimation, what is the best (in
terms of asymptotic MSE) observation model to take into account?
The coherent or the noncoherent one?
The answer is given by the reparameterization inequality (10) as one
can note that the coherent observation model is obtained from the
noncoherent observation model by introducing (L− 1)×M equal-
ity constraints on the σl:

σl
m − σmej2πωm(l−1)T = 0, 2 ≤ l ≤ L, 1 ≤ m ≤ M,

or by introducing an injective reparameterization of the σl:

σl = σl (σ,ω) , 1 ≤ l ≤ L.

Then (10) allow to state that:

BCRτ |˜θ
(
θ̃
)
≤ BCRτ |θ (θ) (20)

Additionally, if all the targets have the same velocity: ωm =
ω, 1 ≤ m ≤ M , then H

τ,ω|˜θ = 0 and equality is reached

BCRτ |˜θ
(
θ̃
)
= BCRτ |θ (θ).

As a consequence, the reparameterization inequality is a key tool
for system analysis and design in the asymptotic region since it
allows to state the following design principles for delay and Doppler
estimation:
• if your main requirement is performance estimation, then the
Doppler information must always be taken into account (has an
unknown parameter) when you estimate delay, at the expense of a
more complex ML algorithm,
• if your main requirement is delay estimation of a set of point
scatterers having the same velocity ω = ω1M×1 (point scatterers
of the body of a target for example), then the best processing (same
asymptotic performance but less computations) is the noncoherent
MLE:

. τ̂ = argmax
τ

{
L∑

l=1

‖ΠAxl‖2
}
, ΠA = A

(
AHA

)−1
AH

in comparison with the coherent MLE:

. (τ̂ ,ω̂) = arg max
(τ ,ω)

{‖ΠA ([x1 · · · xL]ψ
∗)‖2} .

4. CONCLUSION

For system design and optimization it is worth knowing the general
reparameterization inequality (10) derived in [4]. Indeed, a way to
improve the estimation of a subset of unknown parameters (parame-
ters of interest for example) can be to introduce, by design choices,
either a parameterization change or equality constraints among the
other parameters (nuisance parameters for example).
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