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ABSTRACT

A new phase-based approach for frequency estimation of a
single cisoid in the presence of additive white noise is pro-
posed in this paper. The main idea is to divide the observed
data into a number of segments by downsampling and exploit
this new structure for parameter estimation. The maximum
likelihood estimator for frequency is then developed, which is
shown to be superior to conventional phase-based methods in
terms of uniform performance. Computer simulations also il-
lustrate that the mean square frequency error of the proposed
scheme can attain Cramér-Rao lower bound for sufficiently
high signal-to-noise ratio conditions.

Index Terms— frequency estimation, phase unwrapping,
maximum likelihood estimation

1. INTRODUCTION

Estimation of the frequency of a single sinusoid in additive
white Gaussian noise is a long studied problem in communi-
cations and signal processing. Generally speaking, frequency
estimation can be achieved by either nonparametric or para-
metric means [1]. In case of a single complex tone, a standard
parametric methodology, namely, phase-based approach [2],
is to utilize the angles of the observed data. Tretter [3] was
the first of this proposal by noting that the phase of a cisoid
is a linear function of frequency, which is modulated by 2π.
That is, in order to achieve accurate estimation, the phase
must be correctly unwrapped. A simple strategy is to com-
pute the phase difference of adjacent received signals so that
the resulting values follow a moving average process and the
frequency can be retrieved by weighted phase average (WPA)
[4]. This scheme in fact avoids the procedure of phase un-
wrapping, and has the advantages of performing well when
the signal-to-noise ratio (SNR) is large. However, the WPA
will fail when the frequency is close to ±π and is shown to
be inconsistent [5]. Other approaches such as [5]-[7], which
perform the unwrapping of the phases in different ways, can
be regarded as time-domain processing techniques. Neverthe-
less, there are two major drawbacks of employing the phase
unwrapping techniques, namely, the high threshold SNR and

the fact that the estimation accuracy is not independent of the
frequency. In this work, we contribute to derive a downsam-
pling based approximate maximum likelihood (ML) approach
to overcome the latter problem.

The rest of this paper is organized as follows. One gen-
eral strategy for the phase unwrapping based algorithms is
presented in Section 2, then the proposed estimator is derived
in Section 3. In Section 4, simulation results are included to
evaluate the performance of the developed approach by com-
paring with the WPA [4] and phase-based ML [7] estimator,
as well as Cramér-Rao lower bound (CRLB). Finally, conclu-
sions are drawn in Section 5.

2. A MODEL AND ALGORITHM

The signal model is:

y(n) = x(n) + q(n) (1)

x(n) = Aej(ωn+θ), n = 0, 1, · · · , N − 1 (2)

where ω, θ ∈ [−π, π) and A are the unknown frequency,
phase and signal amplitude, while q(n) is a zero mean com-
plex white Gaussian noise with variance σ2. Here we are in-
terested in finding the frequency from the N samples of y(n).
We define ∠y(n) = (ωn+θ+∠q(n)) mod (2π) ∈ [−π, π)
as the phase of y(n) before phase unwrapping while∠ȳ(n) =
(ωn+ θ + ∠q(n)) being the phase with ideal phase unwrap-
ping, where ∠a represents the angle of a. In published works
such as [5] [7], the authors propose different estimation func-
tions, which can be generalized as f , to get the estimates from
n samples of {y(i)}, i = 0, 1, · · · , n− 1:[

ω̂(n−1) θ̂(n−1)
]
= f({y(i),∠ȳ(i)}) (3)

Once a new sample y(n) is received, an easy way ro deter-
mine ∠ȳ(n) is to choose an appropriate integer C [7] so that

∠ȳ(n) =∠y(n) + 2πC (4)

lies in the interval [nω̂(n−1)+ θ̂(n−1)−π, nω̂(n−1)+ θ̂(n−1)+

π), and then an updated estimate of ω̂(n) and θ̂(n) can be ob-
tained using (3) with the (n+1) samples. By an initial choice
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of ω̂(0) = 0 and θ̂(0) = ∠ȳ(0) = ∠y(0), as long as the SNR is
sufficiently high and ω is not close to ±π, (4) can unwrap the
phase ∠ȳ(n) correctly and then the algorithm goes on when a
new sample comes in, therefore is suitable for real time com-
putation.

One of the major problems of this kind of algorithms
is that their performance is dependent on ω [7]. These ap-
proaches perform well when ω is close to 0, but might fail if
the frequency is close to ±π, as a small noise will make the
actual value of nω+ θ falling outside of the boundaries of the
interval [nω̂(n−1)+ θ̂(n−1)−π, nω̂(n−1)+ θ̂(n−1)+π). This
further leads to an inaccurate phase unwrapping of ∠ȳ(n) in
(4), then a degradation of performance. In next section, we
first propose a general idea to overcome this problem and then
apply it to derive an approximate ML frequency estimator.

3. PROPOSED ALGORITHM

3.1. A General Solution

Consider the downsampled version of y(n):

ym(nm) = xm(nm) + qm(nm),m = 0, 1, · · · ,M − 1 (5)

xm(nm) = x(Mnm +m)

= Aej(Mωnm+mω+θ) = Aej(μnm+φm) (6)

That is, we separate the whole data set into M subsets where

μ = (Mω) mod (2π) = Mω + 2πB ∈ [−π, π) (7)

φm = (θ +mω) mod (2π) (8)

are the new common frequency and phase for the mth subset
and B is an integer. By doing this segmentation, although the
original frequency is fixed, we can choose an appropriate M
to make μ not close to±π. Furthermore, instead of estimating
ω̂ and θ̂ from y(n), we retrieve μ̂ and the new phase vector
Φ̂ =

[
φ̂0 φ̂1 · · · φ̂M−1

]
from M subsets of {ym(nm)}:

[
μ̂ Φ̂

]
= f({ym(nm),∠ȳm(nm)}M−1

m=0 ) (9)

It will be shown that using the above different structure of
y(n), the derived estimator will not degrade, and the final es-
timate of ω̂ can be determined as

ω̂ =
μ̂− 2πB

M
(10)

Defining θ̂m = φ̂m − mω̂ + 2πBm ∈ [−π, π) where Bm,
m = 0, 1, · · · ,M − 1, are integers, according to (8), the final
estimate of the phase becomes

θ̂ =

∑M−1
m=0 θ̂m
M

(11)

Now the problem is to select an M to make (5)–(11) work.
Here we propose to apply the weighted linear prediction

(WLP) technique [4] to the first R samples to get a rough
estimatie of w, denoted by ω̂rough, and set

ωr = (rω̂rough) mod (2π), r = 1, 2, · · · , R (12)

We further define
M = arg min

r=1,2,··· ,R
|ωr| (13)

That is, choosing μ as the frequency closest to 0 among {ωr}.
In Section 4, we show that even setting R = 5 in the follow-
ing approximate ML methodology can achieve accurate and
uniform frequency estimation performance.

3.2. Approximate ML Estimator

We now consider the ML criterion, which is widely used in
parameter estimation, to derive the estimation function f in
(9).

At each time point n = N − 1, we want to estimate μ
and Φ based on all the N received samples y(n) up to time
N − 1, which is, from all the subsets ym(nm) defined in (5).
Decomposing N − 1 = ML + m where m ∈ [0,M − 1]
and L are integers. We notice that each subset ym(nm) has a
length Lm where L0 = L1 = · · · = Lm = L + 1, Lm+1 =

Lm+2 = · · · = LM−1 = L and
∑M−1

m=0 Lm = N . Writing

y =
[
yT
0 yT

1 · · · yT
M−1

]
(14)

ym =
[
ym(0) ym(1) · · · ym(Lm − 1)

]T
(15)

and the signal and noise parts being x and q, respectively. As
long as the noises are independent and identically distributed,
the ML estimates, namely, μ̂ and Φ̂ correspond to maximizing

p(x|μ,Φ)

=
1

(πσ2)N
exp(−

∑M−1
m=0

∑Lm−1
nm=0 |ym(nm)−Aej(μnm+φm)|2

σ2
)

=D exp(
2A

σ2

M−1∑
m=0

Lm−1∑
nm=0

cos(∠ȳm(nm)− (μnm + φm)))

(16)

where D = 1/(πσ2)Ne−
∑

M−1

m=0

∑
Lm−1

nm=0
(|ym(nm)|2+A2)/σ2

is
a constant. Taking the natural logarithm of both sides of (16)
yields Λ(μ,Φ) = ln p(x|μ,Φ)

= lnD +
2A

σ2

M−1∑
m=0

Lm−1∑
nm=0

|ym(nm)|

cos(∠ȳm(nm)− (μnm + φm)) (17)

Differentiating Λ(μ,Φ) with respect to μ and φm and equat-
ing the resultant expressions to zero result in

∂Λ(μ,Φ)

∂μ
=
2A

σ2

M−1∑
m=0

Lm−1∑
nm=0

nm|ym(nm)|

sin(∠ȳm(nm)− (μnm + φm)) = 0 (18)
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∂Λ(μ,Φ)

∂φm
=
2A

σ2

Lm−1∑
nm=0

|ym(nm)|

sin(∠ȳm(nm)− (μnm + φm)) = 0 (19)

for m = 0, 1, · · · ,M − 1. The sine function in (18) and (19)
makes the equations highly nonlinear, therefore a closed form
solution does not exist. To solve this problem, we assume
that the SNR, defined as A2/σ2, is sufficiently high, then the
phase error∠ȳm(nm)−(μnm+φm) → 0. By approximating
sinx ≈ x for small x, (18) and (19) become

2A

σ2

M−1∑
m=0

(Pm,1 − Pm,2μ− Pm,3φm) = 0 (20)

2A

σ2
(Pm,4 − Pm,3μ− Pm,5φm) = 0 (21)

Pm,1 =

Lm−1∑
nm=0

nm|ym(nm)|∠ȳm(nm) (22)

Pm,2 =

Lm−1∑
nm=0

n2
m|ym(nm)| (23)

Pm,3 =

Lm−1∑
nm=0

nm|ym(nm)| (24)

Pm,4 =

Lm−1∑
nm=0

|ym(nm)|∠ȳm(nm) (25)

Pm,5 =

Lm−1∑
nm=0

|ym(nm)| (26)

for m = 0, 1, · · · ,M − 1. Solving all the equations yields

μ̂ =

∑M−1
m=0 Qm,1∑M−1
m=0 Qm,2

(27)

φ̂m =
Pm,4 − Pm,3μ̂

Pm,5
(28)

where Qm,1 = Pm,1 −
Pm,3Pm,4

Pm,5
(29)

Qm,2 = Pm,2 −
P 2
m,3

Pm,5
(30)

indicating that when a new sample at time n = N − 1 =
ML + m comes in, only the corresponding subset ym is
changed, and we only need to update Pm,i1 and Qm,i2 , i1 =
1, 2, · · · , 5 and i2 = 1, 2, to compute the new estimates μ̂,
φ̂m, then ω̂ can be solved using (10). It is also worthy to
notice that this approach is a generalization of [7]. That is,
when M = 1, it is reduced to [7]. Finally, the algorithm of
the proposed estimator is summarized in Table 1.

4. SIMULATION RESULTS

Computer simulations have been carried out to evaluate the
performance of the proposed algorithm in the presence of

1. Use the firstR samples to determine M by (12) and (13).
Set the initial estimates ω̂ = μ̂ = 0 and θ̂m = ∠ym(nm)
for m = 0, 1, · · · ,M − 1.

2. For time point n = N−1 > M−1, stack the new com-
ing sample y(n) in the end of the corresponding subset
{ym(nm)} according to (6), get ∠ȳm(nm) from (4) by
substituting ω̂ and θ̂ with μ̂ and φ̂m.

3. Calculate the new Pm,i1 and Qm,i2 , then get updated μ̂

and φ̂m using (22)–(30).

4. Update ω̂ by (10).

5. Repeat 2-4 every time a new sample comes in.

Table 1. Approximate ML Frequency Estimation Algorithm

white Gaussian noise. The mean square frequency error
(MSFE) is assigned to evaluate the algorithm performance.
All results provided are averages of 2000 independent runs.

In the first test, we study the performance of the proposed
algorithm comparing with the WPA [4] and phase-based ML
estimator [7]. The tone amplitude and frequency are A = 1
and ω = 0.7π while the phase varies from −π to π in each
independent run. We chooseR = 5 in the proposed algorithm
and three data lengths, namely, N = 10, N = 30 and N =
100 are tested, while the MSFEs versus SNR are plotted in
Figure 1. The proposed approach performs the best in the
sense of achieving the threshold SNR of 10dB in all the three
cases. It is also shown that the threshold performance of the
proposed estimator is independent of the length of the data,
indicating that it in fact only depends on selection of M and
the accuracy of the phase unwrapping procedure of (4) under
the new frequency μ, which in turn depends on the SNR. This
result also indicates that the idea of dividing the whole data
set into several subsets will not degrade the performance as
long as the number of subsets, M , is chosen to make μ not
close to ±π.

Figures 2 to 4 plot the frequency versus SNR contours
of MSFE for the WPA, phase-based ML and proposed meth-
ods under N = 30. It is observed that proposed scheme
has a desirable merit of uniform performance. It also has the
best threshold SNR of 10-14dB when ω varies from −0.9π to
0.9π, among all the methods, which agrees with the first test.
Notice that when the true frequency is close to 0, the proposed
method performs almost the same as the phase-based ML al-
gorithm [7]. It is because in that case, the system will choose
M = 1 and it is reduced to [7].

5. CONCLUSION

In this paper, we first discuss a general procedure of the
phase-based frequency estimation algorithms, and then an
idea of dividing the whole data set into several subsets is
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introduced. The maximum likelihood criterion is also applied
to derived a new estimator based on this downsampling tech-
nique. Computer simulation shows that the segmentation of
the data does not degrade the performance of the estimator,
and the proposed scheme performs outstandingly in terms of
estimation accuracy under a wide range of frequency.
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Fig. 1. Mean square frequency error versus SNR for different N .
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Fig. 2. Contour plot of WPA.
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Fig. 3. Contour plot of phase-based ML method.
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Fig. 4. Contour plot of proposed estimator
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