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ABSTRACT

In this paper, we investigate the effect of applying an ex-
ponential window on the limiting spectral distribution (l.s.d.)
of the exponentially windowed sample covariance matrix
(SCM) of complex array data. We use recent advances in
random matrix theory which describe the distribution of
eigenvalues of the doubly correlated Wishart matrices. We
derive an explicit expression for the l.s.d. of the noise-only
data. Simulations are performed to support our theoretical
claims.

Index Terms— Array signal processing, Limiting Spec-
tral Distribution, Random Matrix Theory

1. INTRODUCTION

The distribution of the eigenvalues of the sample covariance
matrix of data has important impact on the performance of
signal processing algorithms. Our knowledge about the dis-
tribution of eigenvalues and eigenvectors of complex Wishart
matrices and their limiting behavior is emerging as a key tool
in a number of applications such as source identification and
analysis of wireless MIMO channels [1–4].

Let X = [X1, · · · , XN ] contains N independent zero
mean Gaussian random M -dimensional snapshot vectors
with covariance matrix of A, i.e., NM (0,A), where A is a
nonnegative M × M Hermitian matrix. Some signal pro-
cessing algorithms process a batch of data together using a
rectangular window. However in a number of practical signal
processing algorithms, the SCM is estimated by applying a
window as follows

RN = 1
N

∑N

i=1 wiXiX
H
i , (1)

where {wi ≥ 0, i = 1, · · · , N} is a non-negative sequence.
These weights allows to flexibly emphasize or deemphasize
some of the observations. Using smaller weights for old data
samples allows to improve the agility of the algorithms in
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many applications such as cognitive radio, where it is impor-
tant to detect the activities and idle channels as fast as pos-
sible. Among all windows, the exponential window, wi =
w0p

i, is commonly used because

1. this window allows to develop and implement fast re-
cursive algorithms in real-time applications which are
considerably less expensive in terms of computational
complexity (e.g. see [5, 6]), and

2. allows to forget the old data, thereby improving the
tracking ability in non-stationary environments.

Most of the existing results in literature about the behavior of
the eigenvalues mainly consider the rectangular window. In
this case the SCM of the observations has a Wishart distri-
bution and the joint probability density function of the eigen-
values of SCM can be expressed in terms of hyper-geometric
functions [7] which is applicable in small array cases. An al-
ternative approach is to employ the following empirical spec-
tral distribution (e.s.d.) of an arbitrary square matrix A ∈
CM×M

FA(x)
Δ
= 1

M

∑M

i=1 u(x − λi), (2)

where λ1 ≥ λ2 ≥ · · · ≥ λM are eigenvalues of A and u(.)
denotes the unit step function. Note that, in this definition all
eigenvalues of A are assumed to be real. Although this for-
mulation is less explicit than the joint pdf of eigenvalues, it
describes the behavior of the eigenvalues. For a random ma-
trix A, the e.s.d. FA(x) is a random function, and in many
practical cases, converges almost surely to a deterministic cu-
mulative distribution function as the dimension of the system
grows. In such cases, it referred to as the limiting spectral
distribution (l.s.d.) of A.

In this paper, we study the effects of exponentially win-
dowing on the distribution of the eigenvalues of the SCM.
In this case, the SCM has a doubly correlated Wishart dis-
tribution [8–10]. We must note that, there are numerous re-
search results for the case of Wishart matrices, however, the
spectral properties in the doubly correlated case has not been
sufficiently studied. In recent years, some results have been
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obtained on the limiting behavior of the e.s.d. of correlated
Wishart matrices. For the white noise case, we study the be-
havior of eigenvalues of the exponentially windowed SCM.
The demonstrated results provides a key step toward charac-
terization of the distribution of eigenvalues in the general Co-
variance matrix of windowed data. The results of this work
are useful in the design and implementation of robust algo-
rithms using windowed snapshots.

The remainder of this paper is organized as follows: Sec-
tion II introduces the system model and some important math-
ematical tools. Asymptotic spectrum of the eigenvalues in
noise-only data case is analyzed in section III. Section IV pro-
vides simulation results. Finally, we conclude this work and
suggest future works in Section V.

2. SYSTEM MODEL

Using the same assumptions as in eq. (1), windowed SCM
can be rewritten as

RN =
1

N

N∑
i=1

wiA
1
2 UiU

H
i A

1
2 =

1

N
A

1
2 UWNU

H
A

1
2 , (3)

where U = [U1, · · · , UN ] is an M × N matrix contains i.i.d.
zero-mean unit-variance complex Gaussian entries, A

1
2 is a

nonnegative definite square root of the covariance matrix A

and WN
Δ
= diag(w1, · · · , wN ). The matrix RN has a dou-

bly correlated Wishart distribution. In practice, it is very com-
plex to directly characterize the e.s.d. of RN , thus, we use the
Stieltjes transform of this distribution and indirectly charac-
terize the behavior of the eigenvalues. Then, in the asymptotic
regime as M,N → ∞ given M

N
→ c > 0, the inverse trans-

form of the limit gives the l.s.d. of SCM.

Definition 1 Stieltjes transform, m(z), z ∈ C+ ≡ {z ∈ C :
Im(z) > 0} of a distribution function FR(x) is defined as

m(z) =

∫
1

λ − z
dFR(λ). (4)

The inverse Stieltjes transform formula is as follows:

FR(x) =
1

π
lim

y→0+

∫ x

−∞

Im{m(t + iy)}dt, ∀x ∈ R. (5)

We use the following theorem which gives the Stieltjes trans-
form of the correlated Wishart matrix [10] and is the basis for
derivations in this paper.

Theorem 1 For a window with length of N , consider the
matrix defined by RN = 1

N
AN

1
2 UWNU

H
AN

1
2 . Assume

that all elements of U ∈ CM×M are i.i.d. random variables
with zero-mean, unit variance and E{|Uij |

4} < ∞. In addi-
tion, suppose that AN ∈ CM×M is a Hermitian nonnegative

definite matrix, WN = diag(w1, · · · , wN ), FAN
D
→ FA,

FWN
D
→ FW when M,N → ∞ with M

N
→ c > 0. In

this case, the empirical distribution FRN , with probability 1,
converges weakly to a probability distribution function FR

whose Stieltjes transform m(z), for z ∈ C+, is given by

m(z) =

∫
1

a
( ∫

w
1+cwe(z)dFW(w)

)
− z

dFA(a), (6)

where e(z) is the unique solution of the following equation in
C+

e(z) =

∫
a

a
( ∫

w
1+cwe(z)dFW(w)

)
− z

dFA(a). (7)

Proof 1 See [10] for proof. Similar results are also demon-
strated in [8, 9] with some differences in the assumptions on
correlation matrices.

Since in practice, the array dimension and/or sample size
are usually finite numbers, this method gives a determinis-
tic approximation for the actual sample eigenvalue distribu-
tion. For an arbitrary window and white noise we have A =
σ2

IM×M and thus dFA(x) = δ(x−σ2)dx. In this case from
(6), (7), we obtain m(z) = 1

σ2 e(z) and

m(z) =
1

σ2
∫

w
1+cwσ2m

dFW(w) − z
. (8)

Let SF denotes the support of the distribution function
FR(x) and Sc

F shows its complement. From (5), we see that
SF consists of points on the real axis where the imaginary
part of m(z) is positive. In [11], it is shown that for one sided
correlated Wishart matrix, limy→0+ mF (x+ iy) exists for all
x �= 0, and therefore we can define

mF (x) = lim
y→0+

mF (x + iy), x ∈ R \ {0}. (9)

The following lemma allows to determine these points on real
axis.

Lemma 1 ( [11, Lemma 6.1.]) For any c.d.f. F , let SF de-
note its support and Sc

F be the complement of SF . For x ∈
Sc

F , m = mF (x) is the only real solution of x = z(m) which

satisfies dz(m)
dm

> 0, where z(m) is the inverse function of
m(z). Also conversely, for any real m in the domain of z(m)

if dz(m)
dm

> 0 then x = z(m) is outside the support of F .

This means that Sc
F , is the intervals on the vertical axis where

z(m) is increasing for real values of m. According to (8), for
noise only data z(m) can be written as follows

z(m) =

∫
σ2w

1 + cwσ2m
dFW(w) −

1

m
. (10)

3530



3. SPECTRAL ANALYSIS OF NOISE-ONLY DATA

First we should determine FW(w) as a continuous function
for the wights of window in order to derive some explicit
closed form expressions for the Stieltjes transform. We
note that the exponential window is inherently an infinite
length window, however, in Theorem 1 the length of the
window and array dimension jointly tend to infinity where
limM,N→∞

M
N

= c > 0. This approximation of a real ex-
ponential window, is only accurate if N is large enough such
that the omitted coefficients are negligible. For the truncated
exponential window (wi = w0p

i = w0γ
i

N , i = 1, · · · , N ),
where γ is the ratio of smallest to largest weights of the
window, we define FWN (w) =

∑N

i=1
1
N

u(w − wi). From
i = 	 N

ln γ
ln( wi

w0
)
, it is easy to show that

FWN (w) =

⎧⎪⎨
⎪⎩

0 w < γw0,

1 − 1
N

⌊
N

ln γ
ln( w

w0
)
⌋

γw0 ≤ w ≤ w0γ
1
N ,

1 w0γ
1
N ≤ w,

(11)

where 	.
 is the floor function. This increasing staircase func-
tion takes values on {0, 1

N
, 2

N
, · · · , 1}. To satisfy the con-

straints of Theorem 1 for the exponential window, we assume
that γ = pN > 0, is an arbitrary small real constant. In other
words, the forgetting factor of the window p = γ

1
N ∈ (0, 1)

approaches to 1, as M,N → ∞. The smaller γ, the better
this truncated exponential model fits the exponential window
with the forgetting factor p. From, limN→∞ w0 = ln γ

γ−1 , we

conclude that limN→∞ FWN = FW(w) where

FW(w) =

⎧⎪⎨
⎪⎩

0 w < γ ln γ
γ−1 ,

1 − 1
ln γ

ln(w(γ−1)
ln γ

) γ ln γ
γ−1 < w < ln γ

γ−1 ,

1 w > ln γ
γ−1 .

(12)

is a continuous function, independent of window size N and
satisfies the assumptions of Theorem 1. Thus, Theorem 1 is
applicable to the exponential window truncated at some large
integer N .

Substituting (12) in (10) as the arbitrary constant γ → 0,
in the asymptotic regime of Theorem 1, as M,N → ∞ such
that M

n0
→ c0, z(m) satisfies

z(m) =
1

c0m
ln(1 + c0σ

2m) −
1

m
, (13)

for m ∈ (− 1
c0σ2 ,∞) − {0}, where n0 = − 1

ln(p) .
Theorem 2 gives the explicit distribution.

Theorem 2 For the exponentially weighted window, the lim-
iting spectral distribution of SCM is given by

fR(x)= e
c0−

x

σ2

πc0σ2 Im
(
e−ω

−1(−
x

σ2 exp{c0−
x

σ2 })
)

Πx
−

,x+(x),(14)

where ω−1(x) is the branch of Lambert W function1 [12] with
k = −1 and

x− = σ2 ω0(−e−c0−1) + 1

exp{ω0(− exp(−c0 − 1)) + c0 + 1} − 1
, (15)

x+ = σ2 ω−1(−e−c0−1) + 1

exp{ω−1(− exp(−c0 − 1)) + c0 + 1} − 1
. (16)

are upper and lower boundaries of the support, respectively.

Proof 2 Lemma 1 states that boundaries of the support of
eigenvalues are the real solutions of z′(m) = 0. Denoting
y = ln(1 + c0σ

2m) − c0 − 1, we obtain

yey = −e−c0−1 ∈ [−e−1, 0), ∀c0 > 0. (17)

This equation has two real solutions m− and m+ expressed
using Lambert W function as

m− =
1

c0σ2
(exp{ω0(−e−c0−1) + c0 + 1} − 1), (18)

m+ =
1

c0σ2
(exp{ω−1(−e−c0−1) + c0 + 1} − 1). (19)

Using (13), the boundaries z(m−) and z(m+) are obtained
as in (15) and (16) which determine the support of eigenval-
ues as the interval [z(m−), z(m+)] ⊂ R.

To obtain the l.s.d. of SCM, we should find m(z) with pos-
itive imaginary part for all z ∈ [z(m−), z(m+)]. Denoting
v = − ln(1 + c0σ

2m) − z
σ2 + c0, we obtain

vev = (−
z

σ2
ec0−

z

σ2 ). (20)

Therefore, the solutions are

vk = ωk(−
z

σ2
ec0−

z

σ2 ), ∀k ∈ Z. (21)

According to (9) and given the obtained support, only the
branches with k = 0 and k = −1 are acceptable solutions.
For other values of k the real part of m(z) is not continuous at
the boundaries. It is easy to see that for z ∈ [z(m−), z(m+)],
the expression on the right-hand side of (20) belongs to
[−ec0−1,−e−1]. From the propoerties of Lambert W func-
tion, we also deduce that Im{m} and sin(−Im{v}) have
the same signs, and for x ∈ [−ec0−1,−e−1] the function
sin(−Im{ωk(x)}) is positive for k = −1 and is negative for
k = 0. Therefore, the Stieltjes transform of the l.s.d. of SCM
is obtained from (21) as

m =
1

c0σ2
(ec0−

z

σ2 −ω
−1(−

z

σ2 e
c0−

z

σ2 ) − 1). (22)

1The Lambert W function [12], ω(x) is also called the Omega function
and is the solution of ωeω = z for any complex number z. This equation is
not injective, thus the function ω(z) is multivalued and has a set of different
branches named ωk(z) for any integer k. For real values of z, there exist two
real valued branches of Lambert W function ω0(z) and ω

−1(z) which take
on real values for z ∈ [− 1

e
,∞) ∪ [− 1

e
, 0) and complex values, otherwise.

The function ω0(z) is referred to as the principal branch of the Lambert W
function and shown by ω(z) for simplicity.
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Using the inverse formula in (10), the limiting SD of SCM is

fR(x)=
1

c0σ2π
Im

(
ec0−

x

σ2 −ω
−1(−

x

σ2 exp{c0−
x

σ2 }) − 1
)
. (23)

Dropping the real terms inside the brackets and some simpli-
fications, we obtain (14).

4. SIMULATION RESULTS

In Figure 1, we plot the density functions and a histogram to
show the accuracy of the derived l.s.d. in this paper for an
array with a finite dimension M = 20 and an exponential
window with p = 0.97 and p = 0.995. The histogram of the
eigenvalues is generated by 2000 samples of SCMs computed
from 2000 independent data sets. It can be observed that the
histogram of the eigenvalues accurately fits the derived l.s.d.
of the exponentially weighted windowed data in (14). In some
array signal processing applications, the effective length of
the exponential window has been considered to be Ne = 1

1−p

[5, 6]. To evaluate the accuracy of this approximation, the M-
P density function using this effective length is also plotted
which shows a large deviation from the simulated data.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

S
p
ec

tr
a
l
D

is
tr

ib
u
ti
o
n
,
f
(x

)

Simulated Data
M−P Approximation
Limiting Spectral Distribution

p=0.995

p=0.97

Fig. 1. Distribution of eigenvalues using the exponential win-
dow for M = 20 and p ∈ {0.97, 0.995}.

Also in Figure 1 we observe that for larger values of p

(closer to one), the eigenvalues become more concentrated
around their true values. This is because the effective length
of the window increases as p approaches 1 and this is analo-
gous with the results for rectangular window.

5. CONCLUSION

In this paper the limiting spectral distribution of sample co-
variance matrix in the case of exponentially weighted win-
dowed data has been studied. We have derived an exact ex-
pression for the l.s.d. of the SCM in terms of Lambert W
function, which has excellent agreement with the simulation

results. The results of this work could be used in design and
improvement of detectors and estimators using an exponen-
tially weighted window.
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