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ABSTRACT

Passive estimation of the Time-Difference of Arrival (TDOA)

of a common signal at two (or more) sensors is a fundamen-

tal problem in signal processing, with applications mainly in

emitter localization. A common approach to TDOA estima-

tion is the maximization of the sample cross-correlation be-

tween the received signals. For various reasons, this corre-

lation is sometimes computed via the frequency-domain, fol-

lowing a Discrete Fourier Transform (DFT) of the signals - in

which case the linear correlation is essentially replaced with

a cyclic correlation. Although the two computations differ

merely by some relatively short “edge-effects”, these edge-

effects can entail more impact than commonly predicted by

their relative (usually negligible) effective durations. In this

work we analyze the mean square TDOA estimation error re-

sulting from the use of cyclic instead of linear correlations,

showing that for some signals the loss can be more severe

than what would be predicted by a simple linear dependence

on the delay value.

Index Terms— TDOA, TOA, Time-Delay Estimation,

Cyclic Correlation, Edge-Effects, End-Effects.

1. INTRODUCTION

Estimation of the Time-Difference of Arrival (TDOA) of a

signal intercepted at two sensors is a fundamental, well-

studied problem in signal processing. The estimated time

difference if often used in the context of localizing the trans-

mitting source, be it in the context of acoustic [5] (or under-

water acoustic) signals or electromagnetic signals [2] [3] -

but also in other applications (e.g., synchronization). Clas-

sical estimation approaches, such as the Generalized Cross-

Correlation (GCC) [1] and performance analysis in terms of

bounds [3] or small-errors analysis [2] [4] of specific esti-

mators have been proposed and studied over the past three

decades.

A common (perhaps the most simple) approach to TDOA

estimation is to search for the peak of the ordinary sample-

cross-correlation between the two received signals [1], [4].

The sample-cross-correlation can be conveniently computed

in time-domain, however in certain scenarios which might

involve frequency-domain pre-processing of the signals,

or more complicated signal-models (such as a multipath

model [5]), it becomes more convenient to maximize the

time-domain sample-cross-correlation via frequency-domain

delay-matching, following Discrete Fourier Transformation

(DFT) of the observed signals’ samples. The two opera-

tions are nearly equivalent, with the exception of some “edge-

effects” which are due to the fact that frequency-domain mul-

tiplication of DFTs is equivalent to cyclic, rather than to linear

time-domain convolution.

These “edge-effects” are usually dismissed as negligible,

and are regarded as being equivalent to some additive “noise”

(or “interference”). Such an approach is advocated, e.g., in

[6], where the equivalent Signal to Interference Ratio (SIR) is

roughly quantified as the ratio between the observation length

and the true TDOA between the received signals (which is the

length of the “edge”). Thus, when the observation length is

sufficiently long with respect to the TDOA, these effects are

ignored, especially when “true” additive noise at a lower SNR

is present. However, as we shall show in this paper, it turns

out that this point of view might be too optimistic in practice,

since considerably larger estimation errors can be incurred in

frequency-domain processing due to the differences between

linear and cyclic cross-correlations.

Our goal in this work is therefore to take a closer look at

the implied differences between using a cyclic and a linear

cross-correlation for TDOA estimation. Our detailed error

analysis shows that the sensitivity of the TDOA estimation

error to the associated edge-effects is generally much more

involved than predicted by the simplified “equivalent SIR”

model, and is heavily dependent on the particular signal’s au-

tocorrelation. We derive closed-form expressions, corrobo-

rated by simulation results, which demonstrate that for certain

signals the mean square error (MSE) of the resulting TDOA

estimates can be significantly larger than what would be an-

ticipated by assuming the “equivalent” SIR effect.

2. THE SIGNAL MODEL AND THE SAMPLE
CROSS-CORRELATIONS

We assume that the continuous-time source signal s(t) is

a stochastic wide-sense stationary (WSS) bandlimited zero-

mean Gaussian process, possibly contaminated, at each sen-

sor, by additive, WSS bandlimited zero-mean Gaussian noise

3521978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



processes v1(t) and v2(t),

x1(t) = s(t) + v1(t)
x2(t) = as(t − d) + v2(t), (1)

where a is the relative signal gain between the sensors and d
is the TDOA. For simplicity of the exposition we assume that

all signals are real-valued.

We further denote the respective (true) continuous-time

correlations as Rs(τ) = E[s(t + τ)s(t)] and Ri(τ) =
E[vi(t + τ)vi(t)] (for i = 1, 2), and assume that all three

signals are mutually uncorrelated.

The received signals are usually sampled at their Nyquist

rate, which we shall assume for simplicity to be 1 - imply-

ing that the continuous-time signals are bandlimited between

− 1
2 and 1

2 . Note, however, that the use of an interpolated ver-

sion of the sample-correlation is equivalent to the use of the

sample-correlation of an interpolated version of the signals.

Obviously, computing the former (namely, correlating the sig-

nals and then interpolating the resulting correlation sequence)

is considerably preferable in terms of computational load over

computing the latter (namely, over interpolating the signals

and then correlating). However, for analyzing the difference

between the cyclic and linear correlations, it is more conve-

nient to assume that the signals are initially over-sampled by

a factor of L.

We therefore assume that the signals are sampled at sam-

ple rate L, in sampling intervals of Δ = 1
L , over an observa-

tion period T - yielding N = L · T samples for each signal.

We further assume that the true delay d is an integer multiple

of the sampling interval, such that d = m · Δ, where m is a

positive integer. We shall assume that m << N , namely that

d << T , the true TDOA is much smaller than the observa-

tion interval, an assumption which is commonly justified. The

continuous-time model (1) thereby assumes its discrete-time

version (denoting x1[n]
�
= x1(nΔ), etc.):

x1[n] = s[n] + v1[n], n = 0, 1, ...N − 1
x2[n] = as[n − m] + v2[n], (2)

and we shall further denote Rs[�]
�
= Rs(�Δ) and Ri[�]

�
=

Ri(�Δ) (i = 1, 2) as the sampled versions of the true correla-

tions.

The linear sample-cross-correlation at lag � is given by

R̂[�] =
1
N

N−1∑
n=0

x2[n + �]x1[n], (3)

where we assume that x2[n] is observed also in the necessary

small vicinity outside the [0, N−1] observation interval, such

that x2[n + �] is available for the relevant values of �.

Conversely, the cyclic sample-cross-correlation at lag � is

given by ̂̃
R[�] =

1
N

N−1∑
n=0

x2[n ⊕ �]x1[n], (4)

where the operator ‘⊕’ denotes addition modulu N , such that

if n + � is in the range [0, N − 1], we have n ⊕ � = n + �,

but if n + � ≥ N or n + � < 0, we have n ⊕ � = n + � − N
or n ⊕ � = n + � + N , respectively. It is well-known that̂̃
R[�] is also the extent of “delay-matched” correlation in the

frequency-domain, namely

̂̃
R[�] =

1
N2

N−1∑
k=0

x̃2[k] · ej2πk�/N · x̃∗
1[k] (5)

where x̃i[k] =
∑N−1

n=0 xi[n] · e−j2πkn/N , k = 0, ..., N − 1,

i = 1, 2 are the DFTs of the received signals.

3. TDOA ESTIMATION ERROR ANALYSIS

The TDOA estimate is obtained by finding the maximum of

the implied continuous-time versions of either R̂[�] or
̂̃
R[�].

Using a small-errors assumption and assuming that Δ is suffi-

ciently small, the maximizer can be obtained from a parabolic

interpolation in the vicinity of R̂[m] (or
̂̃
R[m]), namely

d̂ =

(
m +

1
2
· R̂[m + 1] − R̂[m − 1]

2R̂[m] − R̂[m + 1] − R̂[m − 1]

)
· Δ (6)

(or with
̂̃
R[�] substituting R̂[�]). We are therefore interested

in analyzing the estimation error

ε = d̂ − d =
(R̂[m + 1] − R̂[m − 1])/2Δ

(2R̂[m] − R̂[m + 1] − R̂[m − 1])/Δ2
. (7)

Note that the numerator is an approximation of the first

derivative of the cross-correlation at its peak (which is nomi-

nally zero), whereas the denominator is an approximation of

the second derivative of the same (which is nominally a neg-

ative number, proportional to the mean-square bandwidth of

the signal- e.g., [2]). We would therefore assume, under a

first-order small-errors framework, that the denominator is a

deterministic number taking its mean value, such that the only

randomness is in the numerator. As we shall see in our subse-

quent simulation demonstration, this is a realistic assumption

under the studied conditions.

In order to isolate the effect of errors induced by the use

of cyclic correlations from errors induced by additive noise,

we will first address a noiseless scenario, where the model (2)

is reduced into x1[n] = s[n] and x2[n] = as[n − m]. In this

case we have, for the cyclic autocorrelation (for � ≥ 0)

̂̃
R[�] =

1
N

N−1∑
n=0

x2[n⊕�]x1[n] =
a

N

N−1∑
n=0

s[(n⊕�)−m]s[n]

=
a

N

N−1−�∑
n=0

s[n+�−m]s[n]+
a

N

N−1∑
n=N−�

s[n+�−N−m]s[n].

(8)
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Substituting (8) into (7), the numerator takes the form

1
2Δ

(̂̃
R[m+1] − ̂̃

R[m−1]
)

=
a

2T

(
N−m−2∑

n=0

s[n+1]s[n]

−
N−m∑
n=0

s[n−1]s[n] +
N−1∑

n=N−m−1

s[n+1−N ]s[n]

−
N−1∑

n=N−m+1

s[n−1−N ]s[n]

)
=

a

2T

(
− s[0]s[−1]︸ ︷︷ ︸

Q1

− s[N−m]s[N−m−1]︸ ︷︷ ︸
Q2

+
m∑

n=0

s[n−m]s[n−m−1+N ]︸ ︷︷ ︸
Q3

−
m−2∑
n=0

s[n−m]s[n−m+1+N ]︸ ︷︷ ︸
Q4

)
. (9)

We are interested in the second moment of this expression,

which would lead us to the MSE. To this end, we first need

second moments and joint second moments of the terms

marked Q1, Q2, Q3 and Q4 in (9). We shall exploit the Gaus-

sianity of the signal (using the well-known expression for the

mean of the product of four jointly-Gaussian zero-mean ran-

dom variables) and would also assume that T is sufficiently

large with respect to the effective correlation length of the

signal, such that samples which are roughly N samples away

are uncorrelated (we shall refer to this assumption as the “dis-

tant decorrelation” assumption). We thus obtain the following

second moments:

E[Q2
1] = E[Q2

2] = R2
s[0] + 2R2

s[1] (10)

and (under the “distant decorrelation” assumption):

E[Q2
3] =

m∑
�=−m

(m+1−|�|)R2
s[�] , E[Q2

4] =
m−2∑

�=−m+2

(m−1−|�|)R2
s[�],

(11)

as well as the joint moments:

E[Q1Q2] = R2
s[1],

E[Q1Q3] = E[Q1Q4] = E[Q2Q3] = E[Q2Q4] = 0, (12)

and

E[Q3Q4] =
m∑

n1=0

m−2∑
n2=0

Rs[n1 − n2]Rs[n1 − n2 − 2]

=
m∑

�=−m+2

q[�]Rs[�]Rs[� − 2], (13)

with

q[�] =

⎧⎪⎨⎪⎩
m − 1 + � � ≤ 0
m − 1 0 ≤ � ≤ 2
m + 1 − � 2 ≤ �

. (14)

Collecting all terms we obtain (and define)

Q[m]
�
= E

[
(−Q1 − Q2 + Q3 − Q4)2

]
= 2(m+1)R2

s[0]

−2(m+4)R2
s[1]−4(m−1)Rs[0]Rs[2]+4R2

s[m−1]+2R2
s[m]

+ 4
m−2∑
�=1

((m−�)Rs[�] − (m−�−1)Rs[�+2]) Rs[�] (15)

The mean of the denominator in the error expression (7) is

given, using the “distant decorrelation” assumption and (8),

by

E

⎡⎣2 ̂̃
R[m]− ̂̃

R[m−1]− ̂̃
R[m+1]

Δ2

⎤⎦ =
N−m

N
·2a(Rs[0]−Rs[1])

Δ2
,

(16)

and therefore, substituting (9), (15) and (16) for the second

moment of ε in (7), the mean square TDOA estimation error

is given in this case by

E[ε2] =
Q[m]/4T 2

(1 − m
N )2((2Rs[0] − 2Rs[1])/Δ2)2

. (17)

Using some tedious derivations for limit analysis of Q[m]
(omitted from here due to space limitations), it can be shown

that as Δ becomes sufficiently small, this expression con-

verges to

E[ε2] Δ→0−−−→
3R2

s(0) + d
∫ d

−d

(
1 − |τ |

d

)
Ṙ2

s(τ)dτ

T 2R̈2
s(0)

·, (18)

where Ṙs(τ) and R̈s(τ) denote the first and second deriva-

tives (resp.) of Rs(τ). Note that this expression entails

strong dependence on the signal’s autocorrelation function,

and more so on its (squared) first derivative. Once the true

TDOA d is sufficiently large such that the integral becomes

insensitive to d, the MSE becomes linear in d (assuming that

T is fixed), but for smaller values of d this dependence can be

quadratic or stronger - as we demonstrate in simulation later

on.

In order to compare to the “equivalent additive noise”

model, we now analyze the sensitivity to additive noise, iso-

lating this effect by assuming a linear sample-correlation.

We shall assume that the noise exists only in one of the re-

ceived signals, say x1[n], just like the edge-effect when us-

ing a cyclic correlation. Thus, we assume that the second

signal is received with unit gain (a = 1) and no noise, so

x1[n] = s[n] + v1[n] and x2[n] = s[n − m]. The linear

sample correlation is then given by

R̂[�] =
1
N

N−1∑
n=0

x2[n + �]x1[n]

=
1
N

N−1∑
n=0

s[n + � − m](s[n] + v1[n]). (19)
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Fig. 1. Signal correlations for the four experiments.

Substituting into the numerator of (7) we get

1
2Δ

(
R̂[m+1] − R̂[m−1]

)
=

1
2T

(
N−1∑
n=0

s[n+1]s[n]

−
N−1∑
n=0

s[n−1]s[n] +
N−1∑
n=0

s[n+1]v1[n] −
N−1∑
n=0

s[n−1]v1[n]

)

=
1

2T

(
s[N ]s[N −1]︸ ︷︷ ︸

P1

− s[−1]s[0]︸ ︷︷ ︸
P2

+
N−1∑
n=0

s[n+1]v1[n]︸ ︷︷ ︸
P3

−
N−1∑
n=0

s[n−1]v1[n]︸ ︷︷ ︸
P4

)
. (20)

Once again, we need second moments of the terms marked

P1, ..., P4 in (20). These can be derived in a similar fashion

to the Q1, ..., Q4 terms above (exploiting the Gaussianity and

the “distant decorrelation” assumption, as well as the fact that

the signal and noise are mutually uncorrelated), leading to

P
�
= E

[
(P1 − P2 + P3 − P4)2

]
= 2R2

s[0] + 2R2
s[1]

+
N−1∑

�=−N+1

(N − |�|)(2Rs[�] − 2Rs[� + 2])R1[�]. (21)

The mean of the denominator in the error expression (7) is

given in this case by

E

[
2R̂[m]−R̂[m−1]−R̂[m+1]

Δ2

]
=

2(Rs[0]−Rs[1])
Δ2

,

(22)

and therefore, substituting (20), (21) and (22), the MSE is

given by

E[ε2] =
P/4T 2

((2Rs[0] − 2Rs[1])/Δ2)2
, (23)

and taking the limit of P for small values of Δ we obtain

E[ε2] Δ→0−−−→
R2

s(0) − T
∫ T

−T

(
1 − |τ |

T

)
R̈s(τ)R1(τ)dτ

T 2R̈2
s(0)

,

(24)
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Fig. 2. MSE in the four experiments: empirical vs. theoretically predicted

values, cyclic correlation vs. “equivalent” additive noise errors.

4. SIMULATION RESULTS

Our goal in the simulation experiments is two-fold: We

demonstrate that the empirical MSE in the TDOA estimation

in the two considered scenarios, namely noiseless cyclic cor-

relation and noisy linear correlation, match their theoretically

predicted values of (18) and (24) (respectively); And we ex-

amine the validity of the common assumption that the error

induced by cyclic correlation processing is equivalent to the

error induced by noise at an SNR equivalent to the ratio T/d.

In Fig.1 we present the four different correlation func-

tions Rs(τ) which were used in the four experiments. In each

experiment we generated observation signals (with the pre-

scribed correlation) of length T = 1024, at a sampling rate

L = 8 (so Δ = 1
8 and N = 8192) and averaged the MSE

over 400 independent trials for each tested TDOA, ranging

from d = 2Δ = 0.25 to d = 32. For each value of d we

estimated the TDOA using cyclic correlations in noiseless re-

ception, and then using linear correlations with noise present

in the first signal at SNR given by N/d. Evidently, the empiri-

cal results match the respective theoretical predictions. How-

ever, only in Case 1 the MSE due to the cyclic correlation

processing is comparable to the anticipated performance with

“equivalent” SNR. In all the other cases, the errors induced

by the cyclic correlations are significantly higher than antici-

pated from the simple “equivalent SNR” model.
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