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ABSTRACT

The problem of locating a mobile station in a wireless network has
been extensively investigated due to the growing need for reliable
location-based services. In non-line-of-sight environments, the po-
sitioning accuracy of classical least-squares based solutions is inac-
curate. In order to mitigate the effect induced by non-line-of-sight
errors, we address a novel robust nonparametric approach. Herein,
we first estimate the range error distribution using nonparametric
adaptive kernel density estimation and then optimize the approxi-
mate log-likelihood function via a quasi-Newton method. In sim-
ulations, the proposed approach shows improved positioning accu-
racy when the non-line-of-sight contamination is high as compared
to several other competitors. Furthermore, it requires only a small
amount of computational time.

Index Terms— Non-line-of-sight (NLOS) mitigation, nonpara-
metric, adaptive kernel density estimation, robust positioning.

1. INTRODUCTION

Wireless location refers to the problem of finding the position of
a mobile station in cellular or wireless local area network environ-
ments [1]. Due to its expanding applications, various positioning
approaches based on different measurements, such as received-
signal-strength (RSS), time-of-arrival (TOA), time-difference-of-
arrival (TDOA) and angle-of-arrival (AOA), have been proposed
and can be found in the literature of [2]. We consider here only the
range-based positioning using TOA measurements.

In urban areas and indoor environments, the errors induced by
the non-line-of-sight (NLOS) propagation may result in degraded lo-
cation accuracy using traditional positioning approaches, which are
developed under the line-of-sight (LOS) circumstance. In order to
mitigate the effect of the NLOS errors, various robust estimation ap-
proaches exist, including the hypothesis testing based approach [3],
minimum entropy based approach [4], M-estimation approach [5]
and the semi-parametric approach [6]. In order to conquer the defi-
ciencies involved in the semi-parametric approach [6], we proposed
a robust nonparametric estimation approach with the key steps sum-
marized as follows. First, the range error distribution is estimated
using the nonparametric adaptive kernel density estimation. There-
after, the approximate log-likelihood function is constructed and op-
timized using a traditional quasi-Newton method.

The rest of this paper is organized as follows. In Section 2,
we introduce the signal model. In Section 3, the semi-parametric
estimation approach is first briefly overviewed and the deficiencies
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therein are then analyzed. Section 4 introduces the nonparametric
adaptive kernel density estimation, followed by the new proposed
robust nonparametric estimation approach in Section 5. Simulation
results are shown in Section 6 and finally Section 7 concludes the
paper.

2. SIGNALMODEL

Consider the scenario that a mobile station (MS) is surrounded by
N base stations (BSs). The positions of all the BSs are assumed to
be known a priori and the coordinates of the ith BS are denoted as
[xi, yi]

T for i = 1, 2, ..., N . Besides, let θ = [x, y]T be the coor-
dinates of a stationary MS to be determined. The subscript T stands
for transpose. At each BS, a total number of K range measurements
are obtained. The kth range measurement ri(k) between the MS and
the ith BS in NLOS environments is given by

ri(k) =
√

(x− xi)2 + (y − yi)2︸ ︷︷ ︸
hi(θ)

+vi(k), (1)

for i = 1, 2, ..., N and k = 1, 2, ..., K. In Eq. (1), hi(θ) represents
the Euclidean distance between the MS and the ith BS. The range
errors vi(k)s for i = 1, 2, ..., N and k = 1, 2, ..., K are assumed
to be independent and identically distributed (i.i.d) random variables
with probability density function (pdf)

fV (v) = (1− ε)N (v; 0, σ2
LOS) + εH(v), (2)

with NLOS contamination degree ε quantifying the probability
that NLOS errors occur and satisfying 0 ≤ ε ≤ 1. In Eq. (2),
N (v; 0, σ2

LOS) stands for the real Gaussian distribution with zero
mean and variance σ2

LOS and models the errors in LOS only situ-
ation. H(v) stands for the statistical distribution of the errors due
to the NLOS propagation. In general, H(v) has a positive bias
and a larger variance [2] thus is frequently modeled as a shifted
Gaussian distribution N (v; μNLOS, σ

2
NLOS) or a Rayleigh distribu-

tion R(v; σNLOS). It is noted that, both ε and fV (v) in Eq. (2) are
assumed to be unknown throughout this paper.

3. SEMI-PARAMETRIC ESTIMATION APPROACH

In this section, we give a brief overview of the robust semi-
parametric estimation approach proposed in [6], which outperforms
a plenty of other salient robust estimation approaches as shown in
[5, Chap. 3], [6] and [7]. The core steps of this approach are summa-
rized below. First of all, the nonlinear model introduced in Section 2
is linearized by squaring both sides of Eq. (1) and introducing an
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auxiliary variable R that satisfies R = x2 + y2. Subsequently, a
linear regression model

r̃ = Sθ̃ + ṽ, (3)

is formulated by introducing the vector notations

r̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r21(1)−R1

...
r21(K)−R1

...
r2N(1)−RN

...
r2N(K)−RN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2x1 −2y1 1
...

−2x1 −2y1 1
...

−2xN −2yN 1
...

−2xN −2yN 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and ṽ = [ṽ1(1), ..., ṽ1(K), ..., ṽN (1), ..., ṽN (K)]T , where Ri =
x2
i + y2

i for i = 1, 2, ..., N . Vectors r̃ and ṽ are both of dimen-
sion NK × 1 and matrix S is of dimension NK × 3. The param-
eters to be determined here are stacked into the vector parameter
θ̃ = [x, y,R]T . In the next stage, the elements in the vector ṽ are
assumed to be i.i.d random variables with pdf fṼ (ṽ), which is fur-
ther utilized to calculate the score function ϕ̂(ṽ). Next, the score
function ϕ̂(ṽ) and the vector parameter θ̃ are estimated jointly in an
iterative process.

Although the semi-parametric approach gives considerable im-
proved estimation performance, some deficiencies still remain un-
solved. First, an auxiliary parameter R is introduced, but the con-
straint condition R = x2 + y2 is not incorporated into the optimiza-
tion process, which may lead to a suboptimal solution. Secondly,
ṽi(k)s for k = 1, 2, ..., K and i = 1, 2, ..., N strongly violate the
i.i.d assumption after the linearization process. Therefore, it is not
plausible to utilize the residuals ˆ̃v obtained from the second step
of [6, Table1] for the estimation of fṼ (ṽ). Thirdly, an estimate of
fṼ (ṽ) is obtained by using the transformation kernel density esti-
mation (TKDE), in which a tuning parameter λ has to be selected by
maximizing a log-likelihood function in terms of λ. But the problem
exists in how to properly choose an interval [λL, λU ], in which the
global optimum λ resides, automatically according to different im-
pact factors such as network topologies, range error distributions and
so on. A wrongly selected interval can lead to severe performance
degradation, which has been illustrated in [6].

4. ADAPTIVE KERNEL DENSITY ESTIMATION

Before proceeding with the new positioing approach, we introduce
the nonparametric adaptive kernel density estimation (AKDE) [8].
Assume we have M i.i.d observations x1, x2, ..., xM from a contin-
uous univariate distribution with probability density function f(x),
AKDE can provide an accurate estimate of f(x) through the follow-
ing steps.

• Step 1. Find a pilot density estimator f̂0(x) by

f̂0(x) =
1

M

M∑
i=1

1

h0
K(

x− xi

h0
), (4)

where

K(x) =
1√
2π

exp
[−x2/2

]
(5)

is a Gaussian kernel and h0 = 0.79RM−1/5 withR denoting
the interquartile range of the M observations.

• Step 2. Define the local bandwidth factors λis by

λi =

⎛
⎝f̂0(xi)

/[
M∏
i=1

f̂0(xi)

] 1

M

⎞
⎠

−α

, (6)

for i = 1, 2, ...,M , with α denoting the sensitivity parameter
and satisfying 0 ≤ α ≤ 1. In this paper, we choose α = 0.5
as suggested in [8].

• Step 3. Construct the adaptive kernel estimator (AKE) f̂(x)
by

f̂(x) =
1

M

M∑
i=1

1

hλi
K(

x− xi

hλi
). (7)

For fixed local bandwidth factors, the smoothing parameter h is
set to h = 0.79RM−1/5 in [9]. In this paper, we choose h auto-
matically using the least-square cross-validation [8], which provides
better performance both in the main body and in the tail of the den-
sity function as illustrated in [8, Sec 5.3.5]. The basic principle of
the least-square cross-validation is to minimize the score function
M0(h) in terms of h. The score function M0(h) is defined by

M0(h) =

∫ ∞

−∞

f̂2(x)dx− 2

M

M∑
i=1

f̂−i(xi), (8)

where

f̂−i(x) =
1

M − 1

M∑
j=1,j �=i

1

hλj
K(

x− xj

hλj
) (9)

is also an estimator of the density, which is constructed from all i.i.d
observations except xi. Since K(x) is a Gaussian kernel, it is shown
in [8] that

∫ ∞

−∞

f̂2(x)dx =
1

M2

M∑
i=1

M∑
j=1

1√
2π(h2λ2

i + h2λ2
j )

× exp

[
− (xi − xj)

2

2(h2λ2
i + h2λ2

j)

]
. (10)

In [8], minimizing M0(h) defined in Eq. (8) is supposed to produce a
smoothing parameter h that also approximately minimizes the mean
integrated square error (MISE) given by

E

[∫ ∞

−∞

(
f̂(x)− f(x)

)2

dx

]
, (11)

where the symbol E[·] stands for the expectation. The numerical
method suggested at the end of [8, Sec. 3.5] is performed to calculate
the optimum h.

5. ROBUST NONPARAMETRIC ESTIMATION APPROACH

Based on the signal model introduced in Section 2, the following
robust nonparametric approach is proposed to give improved posi-
tioning accuracy. The key steps of it are summarized below.

• Step 1. Calculate the least square solution of Eq. (3) by ˆ̃
θ =

[x̃LS, ỹLS, R̃LS]
T = (ST

S)−1
S
T
r̃, and obtain an initial esti-

mate θLS = [x̃LS, ỹLS]
T .
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• Step 2. Calculate the residual vector v̂ by

v̂ = r− D̂, (12)

where r = [r1(1), ..., r1(K), ..., rN(1), ..., rN(K)]T and
D̂ = [h1(θLS), ..., h1(θLS)︸ ︷︷ ︸

K

, ..., hN (θLS), ..., hN (θLS)︸ ︷︷ ︸
K

]T .

Vectors v̂, r and D̂ are all of dimension NK × 1.

• Step 3. Construct an estimate f̂V (v) of the true pdf fV (v)
from the NK approximate i.i.d entries of v̂ using the tech-
nique introduced in Section 4. When θLS is close to the true
vector parameter θ, f̂V (v) will surely approach to fV (v).

• Step 4. Suppose f̂V (v) is close to the true pdf fV (v), we can
approximate the log-likelihood function by

ll(θ) =
N∑
i=1

K∑
k=1

log f̂V (ri(k)− hi(θ)). (13)

From Section 4, we know that,

f̂V (v) =
1

NK

NK∑
j=1

1√
2πhλj

exp

[
− (v − v̂j)

2

2h2λ2
j

]
, (14)

where v̂j is the jth entry of the residual vector v̂.

• Step 5. The maximum-likelihood estimator is obtained by
minimizing the negative of the log-likelihood function, i.e.

θ̂MLE = argmin
θ

g(θ) = −ll(θ). (15)

From Eq. (14), we have

g(θ) = −
N∑
i=1

K∑
k=1

log{ 1

NK

NK∑
j=1

1√
2πhλj

× exp[− (ri(k)− hi(θ)− v̂j)
2

2h2λ2
j

]}. (16)

Many numerical methods can be utilized to solve Eq. (16),
e.g. Newton-Raphson method, scoring approach and expectation
maximization algorithm. As compared to them, the safest way to
find the global minimum is to perform a 2-dimensional grid search
over a large area [10]. But the drawback of the grid search exists
in the higher computational load. In this paper, we choose the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method
[11], since it guarantees downhill progress towards the minimum in
each Newton step [12]. Details of this method are shown in Table 1.

In the first step, the initial guess of θ is set to θ1 = θLS =
[x̃LS, ỹLS]

T , which is an adequate initialization [2]. Besides, the ini-
tial approximate Hessian matrix is given by H1 = I2, where I2 is
an identity matrix of dimension 2× 2. Due to space limitations, the
analytical expression of �g(θ) is not shown here.

6. NUMERICAL EXPERIMENT

As in [6], we consider here a wireless network with N = 10 BSs
and one MS. The BSs are locating in a two dimensional plane with
fixed coordinates (x1 = 2.5, y1 = 5), (x2 = 1, y2 = 3.5), (x3 =
4.5, y3 = 1.75), (x4 = 1.5, y4 = 4), (x5 = 3, y5 = 4.5), (x6 =
1.75, y6 = 1), (x7 = 4, y7 = 0.75), (x8 = 5, y8 = 1.25), (x9 =
0.5, y9 = 2), (x10 = 3, y10 = 0.25) in kilometer (km) respectively.

Table 1. BFGS quasi-Newton method with a cubic line search pro-
cedure.

Step 1. Obtain a search direction sk = −Hk �g(θk), where

�g(θk) =

[
∂g(θ)

∂x
|θ=θk

,
∂g(θ)

∂y
|θ=θk

]T

(17)

is the gradient of the objective function g(θ) evaluated at θk .
Step 2. Find the step size αk along the direction sk via cubic
line search introduced in [13, Algorithm 3.5 and 3.6].
Step 3. Update the estimate of the vector parameter by
θk+1 = θk + αksk.
Step 4. Set δk = αksk and γk = �g(θk+1)−�g(θk).
Step 5. Update the approximate Hessian matrix by

Hk+1 = Hk + (1 +
γT
k Hkγk

δT
k γk

)
δkδ

T
k

δT
k γk

− (
δkγ

T
k Hk +Hkγkδ

T
k

δT
k γk

), (18)

which is well known as BFGS formula.
Step 6. If ‖θk+1 − θk‖ < Δ, then stop, otherwise repeat the
whole procedure. Threshold Δ takes a small value.

In the Monte-Carlo simulation, the true MS coordinates (x, y) are
both uniformly generated from the interval [2 km, 3 km]. At each
BS, a number of K = 15 range measurements are obtained.

In our simulations, we focus on two important aspects, namely
the positioning accuracy as well as the computational time, which
are crucial to the positioning algorithm design. We test here four
different estimation approaches, namely the traditional least square
approach, robust M-estimation approach, semi-parametric approach
and the new proposed robust nonparametric approach. Note that, the
first three approaches are all developed under the linear regression
model in Eq. (3). For the robust M-estimation approach in [5], Hu-
ber’s score function with a clipping point c = 0.6/(1.483mad(ˆ̃v))
is empirically selected so as to achieve a tradeoff between efficiency
and robustness. Here, mad(·) denotes the median absolute deviation.
In the semi-parametric approach, the bounds of the parameter λ tun-
ing the parametric transformation function are set to 0.9 and 1 as
suggested in [6]. On the contrary, no parameters need to be provided
in our approach.

We start with the positioning accuracy by demonstrating the
mean error distance (MED) as a function of the NLOS contamina-
tion degree ε ranging from 0 to 1 at an increment 0.1. For every
ε, 1500 Monte-Carlo runs have been done to calculate the MED.
Two different statistical distributions of the NLOS errors are consid-
ered, namely H(v) = N (μNLOS, σ

2
NLOS) with μNLOS = 650 and

σNLOS = 450 in the first case and H(v) = R(σNLOS) with pa-
rameter σNLOS = 500 in the second case. In both cases, σLOS of
the underlying zero mean Gaussian distribution is set to 150. Fig.1
and Fig.2 illustrate the MED versus the NLOS contamination de-
gree ε under the two cases, from which we have observed the fol-
lowing phenomena. First, the robust M-estimation approach breaks
down for a contamination degree higher than 0.5 due to the fact that
the median has a breakdown point of 0.5 according to the robust
statistics [14]. Furthermore, the estimation performance of the semi-
parametric approach degrades more rapidly as compared to that of
the robust nonparametric approach when the contamination degree
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Fig. 1. MED versus NLOS contamination degree. NLOS errors take
shifted Gaussian distribution N (μNLOS, σ

2
NLOS) with μNLOS = 650

and σNLOS = 450.

Table 2. The average computational time
Computational time

Least square approach 0.00005 sec.
Robust M-estimation approach 0.01612 sec.
Semi-parametric approach 1.09378 sec.
Robust nonparametric approach 2.06402 sec.

is high. A probable reason for this result is that the i.i.d assumption
made in the semi-parametric approach is vastly violated in this case.
Next, the average computational time of one Monte-Carlo run is cal-
culated for the previous simulations. The results are listed in Table 2.
Our approach is also tested in various other situations and achieves
well improved positioning accuracy as compared to the competitors.
The results are not shown here due to space limitations.

7. CONCLUSION

In order to mitigate the effect induced by the NLOS propagation, we
addressed here a robust nonparametric estimation approach, which
chooses all the parameters automatically and adaptively. In compar-
ison with several other salient robust approaches, the new approach
has shown extensively enhanced positioning accuracy in different
scenarios when the NLOS contamination degree is high. However,
the improved performance of our approach comes at the expense of
an increased computational time.
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