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ABSTRACT

This paper studies the correlogram spectrum estimation
method for the case that only a subset of the Nyquist samples
is available. The method is able to estimate the spectrum from
undersampled data. The bias and variance of the estimator
are derived. We also show that there is a tradeoff between the
accuracy of the estimation and the frequency resolution. The
asymptotic behavior of the estimator is also investigated, and
it is proved that this method is a consistent estimator.

Index Terms—Correlogram, undersampling, consistency.

1. INTRODUCTION

Spectrum estimation from a finite set of noisy measurements
is a classical problem with wide applications in communica-
tions, astronomy, seismology, radar, sonar signal processing,
etc. In practice, the rate at which the measurements are col-
lected can be restricted. However, it is viable to make spec-
trum estimation from measurements obtained at a rate lower
than the Nyquist rate. In [1] and [2], authors have shown
that for signals with sparse Fourier representations, it is pos-
sible to estimate the Fourier coefficients using a subset of the
Nyquist samples (samples obtained at the Nyquist rate). In [3]
and [4], the possibility of recovering signals sparse in the
discrete-time Fourier transform (DTFT) domain from com-
pressive samples obtained at a rate lower than the Nyquist
rate has been demonstrated.

In [5], authors have considered power spectral density
(PSD) estimation based on the autocorrelation matrices of the
data. We refer to this method as the correlogram for under-
sampled data. This method is able to reconstruct the spectrum
from a subset of the Nyquist samples while it does not require
the signal to be sparse.

In this paper, the behavior of the correlogram for under-
sampled data is investigated. We show that there is a tradeoff
between the estimation accuracy and the frequency resolu-
tion. The method is reviewed in Section 2 with some modi-
fications. In Section 3, the bias of the estimator is computed
and it is shown that the estimation is unbiased for any signal
length. In Section 4, the covariance matrix of the estimator
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is derived, and it is proved that the estimation variance tends
to zero asymptotically. Therefore, the correlogram for under-
sampled data is a consistent estimator. Finally, the tradeoff
between the estimation variance and the frequency resolution
is illustrated in Section 5.

2. CORRELOGRAM FOR UNDERSAMPLED DATA

Consider a wide-sense stationary (WSS) stochastic process
x(t) bandlimited to W/2 with PSD Px(ω). Let x(t) be sam-
pled using the multi-coset (MC) sampler as described in [5].
Samples are collected by a multi-channel system. The i-th
channel (1 ≤ i ≤ q) samples x(t) at the time instants t =
(nL + ci)T for n = 0, 1, . . . , N − 1, where N is the num-
ber of samples obtained from each channel, T is the Nyquist
period (T = 1/W ), L is a suitable integer, and q < L is the
number of sampling channels. The time offsets ci are distinct,
random positive integer numbers less than L. Let the output
of the i-th channel be denoted by yi(n) = x ((nL + ci)T ).
The i-th channel can be easily implemented by a system that
shifts x(t) by ciT seconds and then samples uniformly at a
rate of 1/LT Hz. The samples obtained in this manner form
a subset of the Nyquist samples. The average sampling rate is
q/LT Hz, and it is less than the Nyquist rate since q < L.

Given the MC samples, the PSD of the signal can be
estimated by transforming the output sequences yi(n) =
x ((nL + ci)T ) into a system of frequency domain equa-
tions. Let Yi(e

jω L

W ) and X(ω) denote the Fourier trans-
form of yi(n) and x(t), respectively. Then, the system
z(ω) = Γs(ω) holds [5], where Γ ∈ Cq×L, z(ω) =
[z1(ω), z2(ω), . . . , zq(ω)]T ∈ Cq×1, s(ω)=[s1(ω), s2(ω),
. . . , sL(ω)]T ∈ C

L×1, and (·)T is the transposition. The
elements of z(ω), Γ, and s(ω) are given by zi(ω) =

e−j
ci

W
ωYi(e

jω L

W )I[− πW

L
, πW

L
), [Γ]i,l = W

L
e−j 2π

L
ciml , sl(ω) =

X(ω − 2π W
L

ml)I[− πW

L
, πW

L
) for 1 ≤ i ≤ q, 1 ≤ l ≤ L, and

ml = − 1
2 (L + 1) + l, where L is an odd number and

I[·) represents the indicator function. Let Rz ∈ Cq×q and
Rs ∈ C

L×L be the autocorrelation matrices of z(ω) and
s(ω). Then, it can be found that

Rz � lim
N→∞

1

N

∫ π W

L

−π W

L

E{z(ω)zH(ω)}dω = ΓRsΓ
H (1)

where (·)H and E{·} stand for the Hermitian transposition
and the expectation, respectively. Consider partitioning the
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bandwidth of x(t) into L equal segments. It is shown in [5]
that the diagonal elements of Rs represent the average power
within these spectral segments, and the off-diagonal elements
are zeros. Thus, (1) can be rewritten as

uk � [Rz]a,b =

(
W

L

)2 L∑
l=1

e−j 2π

L
(ca−cb)ml [Rs]l,l. (2)

The l-th diagonal element of Rs, i.e., [Rs]l,l, corresponds to
the average power within the spectral segment

[
πW −2π W

L
l,

πW − 2π W
L

(l − 1)
)
. Since Rz is a Hermitian matrix with

equal diagonal elements, it is sufficient to let the indices
a and b just refer to the elements of the upper triangle
and the first diagonal element of Rz. Therefore, there are
Q = q(q−1)

2 + 1 equations in (2) (1 ≤ k ≤ Q). The matrix-
vector form of (2) can be written as u = Ψv, where v =
[v1, v2, . . . , vL]T ∈ RL×1 consists of the diagonal elements
of Rs, Ψ ∈ CQ×L and u = [u1, u2, . . . , uQ]T ∈ CQ×1.
Let u1 = [Rz]1,1 and u2, . . . , uQ correspond to the elements
of the upper triangle of Rz. The elements of Ψ are given
by [Ψ]k,l = (W/L)2e−j 2π

L
(ca−cb)ml . Since the elements

of v are real-valued, the number of equations in u = Ψv

can be doubled by solving ŭ = Ψ̆v where ŭ ∈ R2Q×1

and Ψ̆ ∈ R2Q×L are defined as ŭ � [Re(u), Im(u)]T

and Ψ̆ � [Re(Ψ), Im(Ψ)]T . Suppose Ψ̆ is full rank and
2Q ≥ L. Then, v can be determined using the pseudoinverse
of Ψ̆ as

v = (Ψ̆
T
Ψ̆)−1

Ψ̆
T
ŭ. (3)

The elements of ŭ are comprised of the elements of Rz. It is
shown in [5] that Rz can be estimated from a finite number
of samples as

[R̂z]a,b = 2π
W

NL

N−1∑
n=0

ya

(
n −

ca

L

)
y∗

b

(
n −

cb

L

)
(4)

where (·)∗ denotes the conjugate of a complex number. The
fractional delays ca/L and cb/L can be implemented by frac-
tional delay filters such as the Lagrange interpolator that is a
finite impulse response (FIR) filter [6]. FIR fractional delay
filters perform the best when the total delay is approximately
equal to half of the order of the filter [7]. This can be achieved
by adding a suitable integer delay D to the fractional delays
(D cancels out in (4)). Then, we can rewrite (4) as

[R̂z]a,b =2π W
NL

∑N−1
n=0

∑n

r=max
(0,n−Nh+1)

∑n

p=max
(0,n−Nh+1)

ha(n − r)ya(r)hb(n − p)y∗

b (p)
(5)

where ha(·) and hb(·) are the impulse responses of the frac-
tional delay filters and Nh is the length of these responses.
Next, ˆ̆u and v̂ are formed as estimations for ŭ and v, re-
spectively. The elements of v̂ represent an estimation for the
average power within each spectral segment.

3. BIAS COMPUTATION

Let x(t) be a zero-mean white Gaussian random process with
PSD Px(ω) = σ2.1 The estimation bias is found by comput-
ing the expected value of v̂. From (3) we have

1A general signal can be written as a filtered Gaussian process.

E{v̂} = (Ψ̆
T
Ψ̆)−1

Ψ̆
T
E{ˆ̆u}. (6)

In order to determine E{ˆ̆u}, it is required to find the expected
value of the real and imaginary parts of R̂z . The expectation
can be performed before taking the real or imaginary parts of
R̂z, as these operators are linear. We can find E{[R̂z ]a,b}
by taking expectation from both sides of (5). The problem is
now reduced to finding E{ya(r)y∗

b (p)}, which is obtained as
E{ya(r)y∗

b (p)}=E{x((rL+ca)T )x∗((pL+cb)T )}=σ2 (7)
for rL + ca = pL + cb (or a = b, r = p), and it equals
zero otherwise. This results from the fact that x(t) is a white
process with PSD Px(ω) = σ2. Applying (7) to (5), we find
that E{[R̂z ]a,b} = 0 for a �= b and

E{[R̂z]a,b}=
2πW

NL

N−1∑
n=0

n∑
r=max

(0,n−Nh+1)

h2
a(n−r)σ2=

2πW

L
Haσ2 (8)

for a = b, where Ha � 1
N

∑Nh−1
m=0 (N − m)h2

a(m). Re-

calling that the first diagonal element of R̂z is used in ˆ̆u and
taking the real and imaginary parts of (8), we have E{ˆ̆u} =
2π W

L
H1σ

2e1, where e1 is a column vector of length q(q −
1)+2 with all its elements equal to zero except for the first el-
ement which is 1. Then, the expected value of v̂ can be found
using (6) as

E{v̂} = 2π
W

L
H1σ

2(Ψ̆
T
Ψ̆)−1

Ψ̆
T
e1. (9)

We analyze next the asymptotic behavior of the estimator.
First, it can be easily shown that R̂z is an asymptotically un-
biased estimator of Rz . Since ˆ̆u consists of the elements of
R̂z and the operations of taking the real and imaginary parts
are linear, it follows that ˆ̆u is also an asymptotically unbiased
estimator of ŭ. Furthermore, letting the number of samples
tend to infinity in (6) and using (3), we find that

lim
N→∞

E{v̂}=(Ψ̆
T
Ψ̆)−1

Ψ̆
T

lim
N→∞

E{ˆ̆u}=(Ψ̆
T
Ψ̆)−1

Ψ̆
T
ŭ=v.

In other words, v̂ is also an asymptotically unbiased estimator
of v. Consider the fact that x(t) has equal power in all spectral
segments (the elements of v are all the same). Since v̂ is
asymptotically unbiased, it follows that the estimator makes
the same estimation for all spectral segments (the elements of
limN→∞ E{v̂} are equal). Using estimated values for a=b=
1 in (2), taking expectation from both sides, and letting the
number of samples tend to infinity, we obtain that

lim
N→∞

E{[R̂z]1,1} =

(
W

L

)2

1
T
L lim

N→∞

E{v̂} (10)

where 1L is the column vector of length L with all its ele-
ments equal to 1. Considering normalized fractional delay
filters (

∑Nh−1
m=0 h2

a(m) = 1) and referring to the definition of
Ha, we also find that limN→∞ Ha = 1. Therefore, using (8),
we find that limN→∞ E{[R̂z]1,1} = 2π W

L
σ2. Combining

this result with (10) results in limN→∞ E{v̂} = 2π
W

σ2
1L.

Letting the number of samples tend to infinity in (9) yields

lim
N→∞

E{v̂} = 2π
W

L
σ2(Ψ̆

T
Ψ̆)−1

Ψ̆
T
e1 =

2π

W
σ2

1L. (11)

It follows from (11) that all the elements of the first column

of (Ψ̆
T
Ψ̆)−1

Ψ̆
T

are equal to L/W 2. Therefore, (9) can be
simplified as E{v̂} = 2π

W
H1σ

2
1L.
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Finally, we define P̂x(ω) as P̂x(ω) � W
2πH1

v̂l for ω in
the l-th spectral segment (1 ≤ l ≤ L), where v̂l are the ele-
ments of v̂. This gives an unbiased estimator of the average
power in each spectral segment. These estimations can also
be arranged in the following vector

p̂ �
W

2πH1
v̂. (12)

4. VARIANCE COMPUTATION

Theorem 1: The correlogram estimation based on undersam-
pled data is a consistent estimator of the average power in
each spectral segment.

Proof. Using (3) and (12), the covariance matrix of the esti-
mator for the Gaussian signal case is given by

Cp̂=

(
W

2πH1

)2

(Ψ̆
T
Ψ̆)−1

Ψ̆
T
UΨ̆(Ψ̆

T
Ψ̆)−1−σ4

1LL (13)

where U � E{ˆ̆uˆ̆uT } ∈ R2Q×2Q and 1LL is the L×L matrix
with all its elements equal to 1.

Let x and y be two arbitrary complex numbers. The fol-
lowing equations hold [8]

Re(x)Re(y) = 0.5 (Re(xy) + Re(xy∗)) (14)
Im(x)Im(y) = −0.5 (Re(xy) − Re(xy∗)) . (15)

The elements of U can be obtained using (14), (15),
E{[R̂z]a,b[R̂z]c,d}, and E{[R̂z]a,b[R̂z]∗c,d} where (a, b)

and (c, d) correspond to the elements of R̂z used in ˆ̆u. Using
(5), we obtain
E{[R̂z]a,b[R̂z ]c,d}
=(2π W

NL
)2

∑
n

∑
u

∑
r

∑
p

∑
s

∑
m ha(n−r)hb(n−p)×

hc(u − s)hd(u − m)E{ya(r)y∗

b (p)yc(s)y
∗

d(m)}
where

∑
n,

∑
u,

∑
r,

∑
p,

∑
s, and

∑
m are notations for∑N−1

n=0 ,
∑N−1

u=0 ,
∑n

r=max(0,n−Nh+1),
∑n

p=max(0,n−Nh+1),∑u

s=max(0,u−Nh+1), and
∑u

m=max(0,u−Nh+1), respectively.
After some computations and using the forth moment of

x(t), it can be found that all the off-diagonal elements of U

are equal to zero. The first diagonal element of U is obtained
as
E{[R̂z ]1,1[R̂z]1,1}=σ4

(
2π W

NL

)2
(∑

n

∑
u

∑
r

∑
s

h2
1(n−r)h2

1(u−s)+
∑

nS1(n)
) (16)

where S1(n) is defined as

S1(n) �
∑

u

∑
r

∑
p

∑
s

∑
m

δ(r − m)δ(p − s) ×

h1(n − r)h1(n − p)h1(u − s)h1(u − m)

and δ(·) is the Kronecker delta. It is straightforward to show
that for Nh − 1 ≤ n ≤ N − Nh , S1(n) is given by

G1 � S1(n) =

2Nh−2∑
g=0

((h1(i) ∗ h1(Nh − 1 − i))|g)
2

where ∗ denotes the convolution operation. Note that G1 is
not a function of n. For 0 ≤ n < Nh − 1, S1(n) is given by

S1(n) =

n+Nh−1∑
g=0

(((h1(i)Wn(i)) ∗ h1(Nh − 1 − i))|g)
2

where Wn(i) is equal to 1 for 0 ≤ i ≤ n and 0 elsewhere. For
N − Nh < n ≤ N − 1, S1(n) is given by

S1(n) =

N−n+Nh−2∑
g=0

((h1(i) ∗ h1(Nh − 1 − i))|g)
2 .

Next, (16) can be rewritten as

E{[R̂z]1,1[R̂z]1,1}=σ4

(
2πW

NL

)2 (∑
n

∑
r

h2
1(n − r) ×

∑
u

∑
s

h2
1(u−s)+(N−2Nh+2)G1+

Nh−2∑
n=0

S1(n)+

N−1∑
n=N−Nh+1

S1(n)
)

and simplified as

E{[R̂z]1,1[R̂z]1,1} = σ4

(
2π

W

NL

)2

×

(
N2H2

1 + (N − 2Nh + 2)G1 + Σ1

)
(17)

where Σ1 �
∑Nh−2

n=0 S1(n) +
∑N−1

n=N−Nh+1 S1(n). Note

that [R̂z]1,1 is real-valued. Therefore, [U ]1,1 is equal to
E{[R̂z]1,1[R̂z ]1,1} as given in (17) and [U ]Q+1,Q+1 equals
zero since the imaginary part of [R̂z]1,1 is zero. For the rest
of the diagonal elements of U , E{[R̂z]a,b[R̂z]a,b} is zero.
Moreover, [U ]k,k (2 ≤ k ≤ 2Q and k �= Q + 1) is obtained

using (14) and (15) as [U ]k,k = 1
2Re

(
E{[R̂z]a,b[R̂z]∗a,b}

)
.

Similar to the computations for E{[R̂z]a,b[R̂z]a,b}, we have

[U ]k,k =
1

2
σ4

(
2π

W

NL

)2 ∑
n

Sk(n) (18)

where Sk(n) �
∑

u

∑
r

∑
p

∑
s

∑
m δ(r−s)δ(p−m)ha(n−

r)hb(n − p)ha(u − s)hb(u − m). It is again straightforward
to show that for Nh − 1 ≤ n ≤ N − Nh, Sk(n) is given by

Gk � Sk(n) =

2Nh−2∑
g=0

(ha(i) ∗ ha(Nh − 1 − i)) |g ×

(hb(i) ∗ hb(Nh − 1 − i)) |g.

For 0 ≤ n < Nh − 1, Sk(n) is given by

Sk(n)=

n+Nh−1∑
g=0

((ha(i)Wn(i)) ∗ ha(Nh − 1 − i)) |g ×

((hb(i)Wn(i)) ∗ hb(Nh − 1 − i)) |g.

For N − Nh < n ≤ N − 1, Sk(n) is given by

Sk(n) =

N−n+Nh−2∑
g=0

(ha(i) ∗ ha(Nh − 1 − i)) |g ×

(hb(i) ∗ hb(Nh − 1 − i)) |g.

Thus, (18) can be rewritten as

[U ]k,k=
1

2
σ4

(
2π

W

NL

)2

((N − 2Nh + 2)Gk + Σk) (19)

where Σk �
∑Nh−2

n=0 Sk(n) +
∑N−1

n=N−Nh+1 Sk(n). All the
elements of the matrix U are determined, and thus, the co-
variance matrix of the estimator can be obtained from (13).
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We analyze next the asymptotic behavior of the estimator.
Letting the number of samples tend to infinity in (13) and
noting that limN→∞ Ha = 1, we find that

lim
N→∞

Cp̂=

(
W

2π

)2

(Ψ̆
T
Ψ̆)−1

Ψ̆
T
(

lim
N→∞

U

)
Ψ̆(Ψ̆

T
Ψ̆)−1−σ4

1LL.(20)

Recall that all the off-diagonal elements of U are zeros
and the first diagonal element of U is given by (17). Letting
the number of samples tend to infinity in (17), we obtain

lim
N→∞

E{[U ]1,1} = σ4

(
2π

W

L

)2

. (21)

The (Q + 1)-th element of U is zero, and if the number of
samples tend to infinity in (19), limN→∞[U ]k,k = 0. There-
fore, all the elements of limN→∞ U are equal to zero except
for its first diagonal element given by (21).

In order to further simplify (20), only the elements of the

first column of (Ψ̆
T
Ψ̆)−1

Ψ̆
T

are required. We have shown
in the previous section that these elements are all equal to
L/W 2. Therefore, (20) can be simplified to

lim
N→∞

Cp̂=

(
W

2π

)2

σ4

(
2π

W

L

)2 (
L

W 2

)2

1LL−σ4
1LL = 0.

In other words, the variance of the estimator tends to zero
as the number of samples goes to infinity, which proves the
consistency of the estimator.

In our derivations, we considered the signal to be noise-
free. For the case of independent additive white Gaussian
noise, the correlogram for undersampled data is an unbiased
and consistent estimator of the sum of the signal and noise.

5. NUMERICAL EXAMPLES

In this section, we investigate the behavior of the estimator
for finite-length signals based on the obtained analytical re-
sults. The estimation variance depends on the number of the
sampling channels q, the number of the spectral segments L,
and the length of the signal Nx. Here, the power of the signal
is set to σ2 = 4 and the Nyquist sampling rate is considered
to be W = 1000 Hz. The time offsets ci (1 ≤ i ≤ q) are
found randomly for each (L, q)-pair and kept unchanged for
different signal lengths. Fig. 1 depicts the variance of the es-
timator [Cp̂]1,1 versus the length of the Nyquist samples Nx

for different values of (L, q)-pairs. The average sampling rate
is also given by qW/L. From the curves corresponding to the
(51, 12), (101, 25), and (201, 50)-pairs, it can be seen that
the performance of the estimator degrades by increasing the
number of spectral segments L, i.e., by increasing frequency
resolution. The average sampling rate is kept almost the same
in this scenario. Consider next the case when the frequency
resolution L is the same but the average sampling rate is dif-
ferent. It can be seen from the curves corresponding to the
(101, 20) and (101, 25)-pairs that the estimation variance is
lower when the average sampling rate is higher.

10
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4
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(L,q)=(201,50)   qW/L=248 Hz

Nx

V
ar

ia
nc

e

Fig. 1. Variance versus Nyquist signal length.

6. CONCLUSION

The correlogram estimation method based on undersampled
data has been analyzed in this paper. The bias of the estimator
has been computed and it has been shown that the estimator
is unbiased for any signal length. The variance of the method
has been also derived and it has been proved that the vari-
ance tends to zero asymptotically. Therefore, this method is a
consistent estimator. The behavior of the estimator for finite-
length signals has been also investigated, and it has been il-
lustrated that there is a tradeoff between the accuracy of the
estimator and the frequency resolution. It has been shown that
at a fixed average sampling rate, the performance of the esti-
mator degrades for the estimation with higher frequency reso-
lution. Furthermore, for a given frequency resolution, the per-
formance improves by increasing the average sampling rate.
Finally, it has been shown that the variance tends to zero as
the length of the signal tends to infinity.
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