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ABSTRACT

In this paper, we present a novel algorithm to design sparse 
FIR digital filters in the minimax sense. To tackle the 
nonconvexity of the design problem, an efficient iterative 
procedure is developed to find a potential sparsity pattern. In 
each iteration, a subproblem in a simpler form is constructed. 
Instead of directly resolving these nonconvex subproblems, 
we resort to their respective dual problems. It can be proved 
that under a weak condition, globally optimal solutions of 
these subproblems can be attained by solving their dual 
problems. In this case, the overall iterative procedure can 
converge to a locally optimal solution of the original design 
problem. The real minimax design can then be achieved by 
refining the FIR filter obtained by the iterative procedure. 
The design procedure described above can be repeated for 
several times to further improve the sparsity of design 
results. The output of the previous stage can be used as the 
initial point of the subsequent design. Simulation results 
demonstrate the effectiveness of our proposed algorithm. 
 

Index Terms— Finite impulse response (FIR) digital 
filter, sparse filter design, minimax.

1. INTRODUCTION 

Traditional digital filter design algorithms mainly focus on 
the development of efficient and reliable numerical design 
methods, and seldom take into account the implementation 
efficiency during the design stage. In this paper, we consider 
the sparse FIR digital filter design problems in the minimax 
sense. The resulting FIR filters have a considerable number 
of coefficients equal to zero, such that the multipliers 
corresponding to zero-valued coefficients are no longer 
required. In general, the l0-norm of filter coefficient vector 
is adopted to measure the sparsity of an FIR filter. However, 
it is known that the l0-norm is highly nonconvex. 
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Lately, inspired by the advance of sparse and redundant 
representation of signals [1]-[2], some techniques have been 
developed to tackle the nonconvexity of such nonconvex 
design problems. In [3], the orthogonal matching pursuit 
(OMP) is employed to design sparse linear-phase FIR filters. 
The OMP algorithm is a greedy one, which successively 
adds one additional index to a set of active indices which 
indicate zero-valued coefficients, such that the residual 
approximation error is minimized. However, the OMP 
algorithm can only handle sparse filter design problems with 
linear equality constraints or a single quadratic constraint, 
which restricts its capability in resolving design problems in 
a more general form. Two heuristic approaches are proposed 
in [4] to design sparse linear-phase FIR filters by using 
linear programming (LP) as building blocks. The first one 
successively thin filter coefficients based on two selection 
rules, i.e., smallest-coefficient rule and minimum-increase 
rule. As its name implies, the first rule chooses one index at 
which the corresponding coefficient has the smallest 
magnitude, while the second one chooses an index at which 
nullifying the corresponding coefficient leads to the 
minimum increase of approximation error. The second 
design algorithm shares a similar idea with the basis pursuit 
(BP) algorithm [5]. By replacing l0-norm by its l1-norm 
counterpart, the original nonconvex design problem is 
relaxed to a convex optimization problem. Another design 
algorithm based on l1-norm is presented in [6]. The l1-norm 
of coefficients is mixed with the minimax approximation 
error as a regularization term in the objective function of the 
design problem. 

The rest of paper is organized as follows. The proposed 
design algorithm is developed in Section 2. Two numerical 
examples are presented in Section 3 to demonstrate the 
effectiveness of the proposed algorithm. Conclusions are 
finally drawn in Section 4. 
 

2. PROPOSED DESIGN ALGORITHM 

2.1. Problem Formulation 
Let  be an ideal frequency response and  represent 
the union of frequency bands of interest. The frequency 
response of an th-order FIR digital filter is defined by 
  (1)
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where  and 
. Then, the sparse FIR filter design problem 

in the minimax sense can be expressed by 
min  (2)
s.t.  

 
  

(2.a)

where  represents a given weighting function, s are 
frequency points sampled over , and 
 

 (3)

  (4)
In (3),  and  are real and imaginary parts of 

, respectively. Similar notations are used in (4). If a 
sparsity pattern is given, a real minimax design can be 
attained by solving the following problem 

min   (5)
s.t. , (5.a)

 , (5.b)
where  is a subset of indices of zero-valued coefficients. 

2.2. Design Strategy 
The proposed design algorithm is inspired by the iterative 
shrinkage/thresholding algorithms (see [7], [8], and 
references therein). The proposed design algorithm mainly 
consists of two steps. We first employ an iterative procedure, 
which is to be developed in the next subsection, to find a 
potential sparsity pattern. Then, a real minimax design can 
be attained by solving (5) with the sparsity pattern obtained 
in the first step. Since (5) is a convex optimization problem, 
the core of the entire design algorithm is to determine a 
potential sparsity pattern. To achieve a better result, we can 
successively run the design procedure described above for 
several times. The first stage starts from a given initial point, 
which can be obtained by solving (5) with an empty , 
while the following ones start from the output of the 
previous stage. This procedure continues until the sparsity 
of the design result cannot be further improved. 

2.3. Iterative Procedure 
The iterative procedure starts from an given , which can 
be obtained by solving (5) with an empty . Let the solution 
obtained in the th iteration be . In the th iteration, 
we first construct a subproblem with the same objective 
function as that in (2), whereas constraints are modified as 
  (6)
where  is defined by 
 

 
(7)

In (7),  denotes an identity matrix and  is chosen so that 
 is convex for all s, which implies 
 where  denotes the maximal eigenvalue 

of a symmetric matrix. In our designs,  is always set to 
. After some manipulations, (6) can cast as 

  (8)
where 

 (9)

 (10)

 (11)

Then, replacing (2.a) by (8), we have 
min  (12)
s.t. . (12.a)

Although (12) is much simpler than (2), it is still nonconvex. 
To tackle (12), we shall resort to its dual problem. Note that 
any feasible solution to (12) is also feasible to (2) as 

 is always nonnegative. Hence, the iterative 
procedure can continue until the sparsity of obtained filter 
cannot be further improved or the design result obtained by 
the dual problem is infeasible to (12). 

The Lagrangian function of (12) is given by 

 

(13)

where  is a Lagrangian multiplier vector 
with nonnegative entries and  is the th component of 

, and  is equal to 1 if  is nonzero or 0 otherwise. 
Since  can be decomposed to a set of functions of 

s independently, the minimizer of  can be obtained 
by minimizing each function with respect to . In this way, 
we attain the dual problem of (12) 

max  (14)

s.t.   (14.a)

  (14.b)
where  denotes a vector with all the entries equal to 1, s 
are a set of auxiliary variables introduced to simplify the 
dual problem formulation, each entry of  is computed by 

, and . It 
is clear that (14) is convex and can be efficiently solved. 

Let the optimal solution of (14) be . Then the 
primal solution  can be recovered by 

 (15)

where . Let  represent the subset of indices 
of zero-valued coefficients computed by (15). Based on the 
weak duality property, the objective value of (14) only 
provides a lower bound of that of (12). However, the 
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following proposition indicates that by solving (14) and 
applying (15), we could achieve an optimal solution of (12). 

Proposition 1: If 
 

 (16)

(15) is an optimal solution of (12). 
Proof: In order to prove the Proposition 1, we have to 

demonstrate that if (16) is satisfied, (15) is a feasible 
solution to (12), and the duality gap between (12) and (14) is 
zero. In the proof, we shall drop all the superscripts (l) for 
ease of notation. 

The Lagrangian function of (14) can be written by 

(17)

where , , and 
 are the Lagrangian multiplier vectors 

associated, respectively, with (15.a), (15.b), and (15.c). Let 
the optimal solution of the dual problem of (14) be 

, which can attained by minimizing 
. Then,  and  should satisfy 

the Karush-Kuhn-Tucker (KKT) optimality conditions [9] 
 

 (18)

  (19)
  (20)
 

 (21)

  (22)
  (23)
 

 (24)

  (25)
Due to (23) and (25), we have 
  (26)
For , we have to distinguish two situations. First, if 
(18) is inactive, we obtain by (21) and (25) 
  (27)
where . Second, if 
(18) is active for some , the corresponding  and  
are uncertain. Let  be the subset of such indices. Then, 
using (26) and (27), (24) can be rewritten by 

 

(28)

It can be observed from (28) that in order to guarantee the 
feasibility of (15) to (12), we should have 

 

(29)

If  is empty or, equivalently, (16) is satisfied, the 
summation term involving  can be removed from (29). In 
view of (20), we then conclude that (15) is feasible to (12). 

Multiplying  on both sides of (24) yields 

 

(30)

where we use (22) and the definition of  to obtain the first 
and second equalities, respectively. Then, by successively 
applying (21), (25), and (23) on (30), we further have 

(31)

Taking , (26), and (27) into (31) further yields 

 

(32)

Table I 
SPECIFICATIONS OF EXAMPLE 1 

Passband region   
Stopband region   
Filter order   and  
Passband magnitude Within dB of unity 
Stopband magnitude Below , , , , and dB 

 
Table II 

DESIGN RESULTS OF EXAMPLE 1 

Stopband magnitude 
level (dB) 

Proposed Minimum 1-norm 
[4] 

N = 80 N = 90 N = 80 N = 90
–20 48 52 33 49 
–25 40 52 42 52 
–30 34 44 34 44 
–35 26 32 20 30 
–40 16 24 8 18 
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It can be seen that if (16) is satisfied (or  is empty), we 
finally have 
  (33)

which means that the duality gap between (12) and (14) is 0. 
 

It should be mentioned that (16) is just a sufficient 
condition, which implies that even if (16) is violated in 
some iterations, the obtained solutions could be still feasible 
to (12). In addition, due to the existence numerical errors, in 
practical designs we employ a soft condition to replace (16) 
 

 (34)

where  is a small parameter specified by designers. 
 

4. NUMERICAL EXAMPLES 

In this section, two numerical examples are presented to 
demonstrate the effectiveness of the proposed design 
algorithm. The multi-stage design strategy is employed to 
implement all the designs. In our designs,  used in (34) is 
set to , and the weighting function  is always 
chosen equal to  over  and  otherwise. In all the designs, 

 frequency points are uniformly sampled over the 
normalized frequency band . The dual problem (14) is 
solved by SeDuMi [10]. 

In the first example, a lowpass linear-phase FIR filter is 
designed by the proposed algorithm. The specifications are 
given in Table I. For each , a set of designs with different 
stopband magnitude levels are implemented. The design 
results in terms of the number of zero-valued coefficients 
are summarized in Table II. For comparison, we also 
employ the minimum 1-norm algorithm proposed in [4] to 
design the sparse FIR filters under the same set of 
specifications, and the design results are also reported in 
Table II. It can be observed that the proposed algorithm can 
achieve better results in 6 designs of total 10 designs, 
whereas the minimum 1-norm algorithm can overperform 
our proposed algorithm only in one design. 

The second example is to design another lowpass FIR 
filter. The detailed specifications are illustrated in Table III. 
For a fair comparison, we first implement a nonsparse FIR 
filter with a specified order, and the upper bound of 
approximation error of the obtained filer is adopted as  
used in (2.a). Then, we implement a sparse filter using the 
proposed algorithm. The design results in terms of the 
number of nonzero-valued coefficients are summarized in 
Table IV. 

5. CONCLUSIONS 

In this paper, a novel algorithm is proposed for sparse FIR 
filter designs in the minimax sense. The core of the design 
algorithm is the dual problem (14), which can be reliably 
solved and lead to the optimal solutions of the nonconvex 

primal subproblems (12) under a weak optimality condition 
(16). Simulation results show that the proposed design 
algorithm can improve the sparsity of designed FIR filters at 
a cost of slightly increasing filter orders. Furthermore, 
compared with some heuristic design algorithms, which are 
based on the l1-norm optimization, the proposed algorithm 
can attain sparser designs. 
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Table III 
SPECIFICATIONS OF EXAMPLE 2 

Passband region   
Stopband region   
Filter order  for proposed algorithm   
Filter order  for nonsparse filter 
design 

, , , , , , 
52, 54, 56, and 58 

 
Table IV 

DESIGN RESULTS OF EXAMPLE 2 

 
(×10-2)

Number of nonzero-
valued coefficients  

(×10-2) 

Number of nonzero-
valued coefficients 

Proposed Nonsparse Proposed Nonsparse
5.573 32 41 3.571 44 51 
5.557 35 43 3.454 42 53 
4.804 36 45 2.884 45 55 
4.484 38 47 2.848 44 57 
4.096 37 49 2.498 48 59 
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