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ABSTRACT

The classical uncertainty principle provides a fundamental tradeoff in

the localization of a signal in the time and frequency domains. In this

paper we describe a similar tradeoff for signals defined on graphs. We

describe the notions of “spread” in the graph and spectral domains, us-

ing the eigenvectors of the graph Laplacian as a surrogate Fourier basis.

We then describe how to find signals that, among all signals with the

same spectral spread, have the smallest graph spread about a given ver-

tex. For every possible spectral spread, the desired signal is the solu-

tion to an eigenvalue problem. Since localization in graph and spectral

domains is a desirable property of the elements of wavelet frames on

graphs, we compare the performance of some existing wavelet trans-

forms to the obtained bound.

Index Terms— Signal processing on graphs, uncertainty princi-

ples, wavelets, graph Laplacians, spectral graph theory

1. INTRODUCTION

The uncertainty principle is a cornerstone result in time-frequency sig-

nal processing and harmonic analysis. It limits the degree to which a

signal can be simultaneously localized in time and frequency. More

precisely, let x(t) ∈ L2(R) be a real-valued signal with norm ||x|| (in

this work we will only refer to the L2 norm) and Fourier transform

x̂(ω). We use [1]

Δ2
t

def
=

1

||x||2
∫ ∞

−∞

(t− t0)
2|x(t)|2dt,

Δ2
ω

def
=

1

||x||2
∫ ∞

−∞

ω
2|x̂(ω)|2 dω

2π

to measure the “spreads” of x(t) in time and frequency, respectively,

with t0
def
= 1

||x||2

∫∞

−∞
t|x(t)|2dt. The uncertainty principle states that

Δ2
t Δ

2
ω ≥ 1

4
, (1)

which implies that localizing a signal in one domain must be done at

the cost of increased spread in the other domain.

In this paper, we establish analogous uncertainty principles for sig-

nals defined on graphs. In recent years, there has been rapidly growing

interest in extending traditional signal processing theory from standard

domains [e.g., �2(Zd)] to non-standard domains such as graphs, which

can be used to model communication networks, to approximate mani-

folds [2, 3], or even to capture nonlocal self-similarity structures in

images [4].
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Early work in this direction focused on multiscale representations

of meshes for computer graphics applications [5]. Another line of

work examined the use of graph approximations to manifolds, with

Belkin and later Giné and Koltchinskii examining the role of the graph

Laplacians [2, 3]. More recently, several authors began considering

multiscale wavelet-like transforms on graphs [6]–[9]. When design-

ing wavelet frames and bases on graphs, it is desirable that the ba-

sis functions be well-localized on the graph, and well-localized in the

“frequency” domain (where frequency is defined in terms of the eigen-

values of the Laplacian matrix, which is defined in Section 2.2).

In a recent work [10] we introduced the notions of graph and spec-

tral spreads Δ2
g(x) and Δ2

s(x) that allow us to quantify exactly how

well-localized a signal x is in both graph and spectral domains. In

that work, we also bounded the product Δ2
gΔ

2
s from below, in analogy

to the classical time-frequency uncertainty principle in (1). However,

the bound was not tight, and required constraints on the graph and the

signal under consideration.

The are two main contributions of this work: First, we provide a

complete characterization of the feasibility region in the space of pos-

sible pairs (Δ2
s(x),Δ

2
g,u0

(x)2) achievable by some signal x, where

Δ2
g,u0

is the graph spread centered at some nominal center vertex u0.

Second, we describe how to implicitly compute a function of the form

γ(s) = min
x

Δ2
g,u0

(x) subject to Δ2
s(x) = s.

This function is important because it forms the lower boundary of the

feasibility region. A main result in this paper is to show that each

point on the curve γ(s) is achievable by an eigenvector of a particular

Hermitian matrix pencil, and vice versa. The computational procedure

for finding the curve γ(s) then boils down to a sequence of eigenvalue

problems.

The rest of the paper is organized as follows. In Section 2 we

provide the mathematical background for spectral analysis on graphs.

In Section 3 we describe the feasibility region of the space of possible

pairs of spreads, and describe a computational procedure for finding the

lower boundary of the region. To verify the theoretical results devel-

oped in this work, we show in Section 4 the resulting curve for a graph

constructed from a smooth manifold and compare the performance of

existing wavelet constructions in the literature to the computed bound.

We conclude the paper in Section 5. Due to space limitations, we only

present the proofs for the most important results in this paper, and leave

the proofs for all other results to [11].

2. MATHEMATICAL FORMULATION

2.1. Graphs, Signals, and Notation

We begin with a simple, undirected graph G = (V (G), E(G)), where

V (G) = {v1, v2, . . . , vN} is the set of N vertices and E(G) =
{e1, e2, . . . , eM} is the set of M edges. Each edge is of the form
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e = {u, v}, with u, v ∈ V ; an edge is an unordered pair of vertices.

The graph is simple in that is has no loops, or edges connecting a vertex

to itself; the graph is undirected because the edges have no orientation.

We will use the notation u ∼ v to indicate that u and v are connected

by an edge. The graph is uniquely determined by its adjacency matrix

A = [aij ]ij , where aij = 1 if there is a link between vi and vj , and

aij = 0 otherwise. The diagonal of A is zero because no loops are al-

lowed, and A is symmetric because the graph is undirected. A simple

generalization is a weighted graph, where each edge has a “weight,”

and the entries of the adjacency matrix are replaced by the weights of

the corresponding edges.

The degree of a vertex δ(v), v ∈ V is the number of edges incident

upon that vertex. It is equal to the sum of the entries of A in the row

or column corresponding to that vertex. We define D as the diagonal

matrix that has the vertex degrees on the diagonal. We can also define a

distance function on the graph: d(u, v) is the smallest number of edges

in a path connecting vertex u to vertex v. It satisfies all the properties

of a metric. We will define δk(v) as the number of vertices on the

graph a distance k from the v, with δ1(v) = δ(v). The eccentricity of

a vertex ε(v) is the distance to the vertex on the graph furthest from v.

For every vertex u on the graph, we define

P u
def
= diag {d(u, v1), d(u, v2), . . . , d(u, vN )} (2)

as the diagonal matrix of distances to u. This matrix will become im-

portant when we define the spread of a signal on a graph.

A signal on the graph x ∈ �2(G) is a mapping from the set of

vertices to R. It can be treated as a vector in R
N , and so any such

signal will be denoted by a boldface variable. There is a natural inner

product on �2(G) defined by 〈x,y〉 = yTx, which induces a norm

||x|| =
√
xTx. We will denote the value of x at vertex v by x(v).

2.2. Spectral Graph Theory and Fourier Transforms on Graphs

Spectral graph theory relates the properties of graphs to the eigenvalues

of certain linear operators related to the graph [12]. These operators

transform a signal on the graph to a different signal on the graph. Any

linear operator on �2(G) can be represented by an N × N matrix.

The operator most commonly considered in spectral graph theory is

the Laplacian matrix, given by

L
def
= I −D

−1/2
AD

−1/2
.

This is the so-called “normalized” Laplacian. There is also an unnor-

malized version of the Laplacian, but we consider only the normal-

ized version here for simplicity. The Laplacian is a symmetric, posi-

tive semidefinite matrix. A connected graph has the eigenvalue 0 with

multiplicity 1, corresponding to a unit-norm eigenvector x0 defined by

x0(v) =
√

δ(v)
2M

. The maximum possible eigenvalue is 2, attained only

by bipartite graphs. The Laplacian matrix is analogous to the Laplacian

operator −∇2 or − d2

dx2 on the real line. In fact, it provides the standard

stencil approximation for the operator on a lattice discretization.

Since the Laplacian matrix is symmetric, we can diagonalize it as

L = FΛF
T
,

where F is the matrix whose columns are the eigenvectors of L, and Λ

is the diagonal matrix of L’s eigenvalues. Given a vector x, we might

like to find its representation in terms of the eigenvectors of L. This

can be computed by taking

x̂ = F
T
x,

where we call x̂ the graph Fourier transform of x. The matrix F T is

the Fourier transform operator. Since the Laplacian is symmetric, F is

orthogonal, so FF T = F TF = I . (Of course, if there are repeated

eigenvalues, then the columns spanning the eigenspace of a repeated

eigenvalue need not be orthogonal, but F can always be chosen to be

orthogonal.) It follows that we can invert the Fourier transform:

x = F x̂.

2.3. Graph and Spectral Spreads

In the classical uncertainty principle for signals defined on the real line,

the time spread for a signal x(t) is defined by

Δ2
t = min

t0

1

||x||2
∫

(t− t0)
2|x(t)|2dt.

By analogy, we can define the graph spread of a signal x ∈ �2(G) as

Δ2
g(x)

def
= min

u0

1

||x||2
∑
v∈V

d(v, u0)
2
x(v)2

= min
u0

1

||x||2x
T
P

2
u0
x, (3)

where the distance metric d(·, ·) is described in Section 2.1, and the

matrix P u0
is defined in (2). In the design of wavelet-like transforms

on graphs, it is desirable for each basis or frame element to be centered

at a given vertex, and well-localized on the graph and in the spectral

domain. To measure how well a signal is localized about a particular

vertex u0, we define the localized graph spread as

Δ2
g,u0

(x)
def
=

∑
v∈V

d(v, u0)
2
x(v)2

= x
T
P

2
u0
x. (4)

Meanwhile, the frequency spread of a signal x(t) is defined by

Δ2
ω =

1

||x||2
∫

ω
2|x̂(ω)|2 dω

2π

=
1

||x||2
∫

x(t)
−d2

dt2
x(t)dt

Since the graph Laplacian is analogous to the Laplacian operator −d2

dt2
,

we can define the spectral spread of x as

Δ2
s(x) =

1

||x||2x
T
Lx. (5)

We refer the readers to [10] for more justifications for using (5) as the

graph spectral spread. Finally, we note that all the spreads defined in

(3), (4), and (5) are invariant to scaling transforms.

3. UNCERTAINTY PRINCIPLES: BOUNDS AND

CHARACTERIZATIONS

3.1. Feasible Regions

In general, we are interested in the feasible region

D def
=

{
(s, g) : Δ2

s(x) = s,Δg,u0
(x) = g for some x ∈ �

2(G)
}
.
(6)

We can easily verify the following properties:

1. The set D is a closed subset of [0, λmax(L)] × [0, ε(u0)
2],

where λmax is the largest eigenvalue, and ε(u0) is the eccentricity of

the vertex u0.

2. The points (1, 0), corresponding to an impulse at u0, and

(0,xT
0 P

2
u0
x0), where x0 is the vector defined in Section 2.2 belong

to D. In fact, they are exactly the points where D intersects with the

horizontal and vertical axes, respectively.

The following proposition points to a more fundamental property:
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D

(1, 0)
Δ2

s

Δ2
g,u0

γ(s)

s

q(α)

Slope: α

Fig. 1. A characterization of the feasible region D for the spectral and

graph spreads. D is a bounded and convex set, and it intersects the hor-

izontal (and vertical) axis at exactly one point. The lower boundary of

D can be implicitly computed by considering tangent lines of varying

slopes.

Proposition 1. The set D is convex.

We leave the proof to [11]. Proposition 1 tells us that D can be

completely characterized by its upper and lower boundaries: any pair

between the two boundaries must also be achievable. In this paper, we

will describe a technique for finding the lower boundary. A similar

technique can be used to find the upper boundary. However, the lower

boundary is more interesting because it provides a kind of uncertainty

bound for signals on the graph.

3.2. The Lower Boundary of the Feasible Region

In what follows, we describe a parameterization and computational

procedure for finding the lower boundary of D.

Definition 1. The lower boundary curve of D is

γ(s)
def
= min

x

Δ2
g,u0

(x) subject to Δ2
s(x) = s

= minxT
P

2
u0
x subject to x

T
x = 1 and x

T
Lx = s

for all s ∈ [0, λmax(L)].

Using Lagrange multipliers, we can see that if a signal x achieves

the minimum for this problem, it must satisfy the equation

(P 2
u0

+ αL)x = λx

for some real Lagrange multipliers α and λ. If we treat α as being

fixed, then this is an eigenvector problem. To study the curve, we define

the matrix pencil

M(α)
def
= P

2
u0

+ αL

and the function

q(α)
def
= λmin(M(α)).

It is easy to see that for any unit norm vector w,

Δ2
g,u0

+ αΔ2
s = w

T (P 2
u0

+ αL)w ≥ q(α). (7)

The equation Δ2
g,u0

+ αΔ2
s ≥ q(α), for any α, defines a half-plane in

which D must lie. This geometric interpretation is illustrated in Figure

1, where a line of slope α provides a lower bound to D. In fact, D must

be contained within the intersection of the half-planes defined by every

α ∈ (−∞,∞).
If x is a unit norm eigenvector associated with the smallest eigen-

value, so that

(P 2
u0

+ αL)x = q(α)x,

then γ(xTLx) = xTP 2
u0
x. If this were not the case, and thus there

were some unit norm w with Δ2
s(w) = Δ2

s(x) and Δ2
g,u0

(w) <
Δ2

g,u0
(x), then we would have

w
T (P 2

u0
+ αL)w < x

T (P 2
u0

+ αL)x = q(α), (8)

and w would be violating (7).

Following the above argument, any eigenvector of M(α) associ-

ated with the eigenvalue q(α) generates a point on the curve γ(·). If for

some α0 the multiplicity of the smallest eigenvalue of M(α) is one,

then there is exactly one point on the line

Δ2
g,u0

+ α0Δ
2
s = q(α0)

that is in D; in this case, the line is tangent to the γ(·) curve, as illus-

trated in Figure 1.

Furthermore, by the Gershgorin disc theorem, there is a neighbor-

hood N around α0 on which M(α) has is an eigenvalue near q(α0) for

α ∈ N , and all other eigenvalues are bounded away from q(α). This

combined with standard perturbation results tells us that q(α) is smooth

at α0 [13]. Furthermore, there is a smooth function x(α) defined on

N such that M(α)x(α) = q(α)x(α). Since x(α)Tx(α) = 1, we

have that x(α)T dv
dα

= 0. This allows us to compute an expression for

the derivative
dq

dα

∣∣∣∣
α0

= x(α0)
T
Lx(α0).

If the multiplicity is greater than one at α0, then any vector

in the eigenspace is on the curve. Using more complicated Gersh-

gorin/perturbation arguments, we can see that though q(α) is not

differentiable at α0, it has distinct left and right-hand derivatives

dq

dα

∣∣∣∣
α−

0

= x(α−
0 )

T
Lx(α−

0 ) and
dq

dα

∣∣∣∣
α+
0

= x(α+
0 )

T
Lx(α+

0 ).

where

x(α−
0 ) = max

x

x
T
Lx

subject to ||x|| = 1 and M(α0)x = q(α0)x

and

x(α+
0 ) = min

x

x
T
Lx

subject to ||x|| = 1 and M(α0)x = q(α0)x.

The eigenvectors x(α+
0 ) and x(α−

0 ) each generate points on the curve,

and it can be shown that every pair on the line segment joining them is

achievable as well. Returning to the case of multiplicity one, we will

define x(α+
0 ) = x(α−) = dq

dα

∣∣
α0

.

Combining these results, we can prove the following theorem.

Theorem 1. For any s ∈ [0, λmax(L)], the function γ(s) = r if any

only if there is some α ∈ R and θ ∈ [0, 1] for which

s = θ
dq

dα

∣∣∣∣
α−

+ (1− θ)
dq

dα

∣∣∣∣
α+

and

r = q(α)− α

(
θ

dq

dα

∣∣∣∣
α−

+ (1− θ)
dq

dα

∣∣∣∣
α+

)
.

Remark 1. The result of this theorem implies that we can generate the

entire curve γ(·) by simply sweeping over α ∈ (−∞,∞); every point

on the curve is achievable by an eigenvector, and so the bound is tight.

Furthermore, since the set of αs for which the multiplicity of q(α) is

greater than one has measure zero, when we do our sweep it is most

likely that every iteration will give us a single point on the curve.
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u0

Fig. 2. Swiss roll graph from SGWT toolbox [8]. Samples are chosen

uniformly from the swiss roll manifold, and edges are drawn between

any vertices within some radius r in R
3 of each other. The vertex u0 is

indicated.

Proof. The “if” direction follows from the geometric arguments above.

The “only if” statement is more complicated. From the previous argu-

ments, we can see that on any segment of α-parameters over which the

multiplicity of q(α) is one, the x-coordinate of the point generated by

the associated eigenvector is continuous. Meanwhile, at the discontinu-

ities (which correspond to those α-parameters with higher multiplicity,

we can bridge the gap by taking a convex combination of the multiple

eigenvectors. Since α = ∞ generates the point with x-coordinate 0,

and α = −∞ generates the point with x-coordinate λmax, we can find

the point (s, γ(s)) for any s ∈ [0, λmax].

4. NUMERICAL RESULTS

To obtain numerical results, we used a graph based on the “Swiss roll”

manifold defined in the SGWT toolbox [8]. The graph was gener-

ated by picking 500 points uniformly at random from the manifold

as vertices. Edges were formed between vertices within a small radius

r = 0.30 of each other in the manifold’s embedding in R
3. The graph

and its manifold structure are illustrated in Figure 2.

Based on this graph, spectral graph analysis wavelets [8] and dif-

fusion analysis wavelets [6] were generated. While the spectral graph

wavelet transform does not involve downsampling the graph, the dif-

fusion wavelet transform does. The center vertex u0 was chosen to

be one of the vertices that remained in the downsampled graph of the

highest level of the diffusion wavelet transform.

To form the lower bound curve, the eigenvector v corresponding to

the smallest eigenvalue of (1− β)P 2
u0

+ βL was found for β ∈ [0, 1].
This is the same as the eigenvector corresponding to the smallest eigen-

value of Pu2
0
+ αL, where α = β

1−β
; this alternate formulation was

used to avoid numerical difficulties at high values of α and was used

to trace the curve for all positive values of α. The eigenvector v was

used to directly compute a point on the curve: (Δ2
s(v),Δ

2
g,u0

(v)). To

generate points on the curve for negative values of α, the eigenvec-

tor corresponding to the smallest eigenvalue of (1− β)P 2
u0

+ βL was

found for β ∈ [0, 1].

The results are shown in Figure 3. As predicted, both constructions

result in wavelets that obey the computed bound. The spectral graph

wavelets are further from the bound, and get closer to the bound at high

spectral spreads. The diffusion wavelets track the bound very closely,

and do so more closely at lower spectral spreads. Of course, there are

other factors in evaluating wavelet transforms on graphs: oversampling

ratio, computational complexity (of both forward and inverse trans-

forms,) and conditioning are very important.

0 1
0

5

10

Δ2
s

Δ
2 g
,u

0

Fig. 3. Spectral spread versus graph spread on a graph based on the

“Swiss roll” dataset. Solid line: computed curve γ(s). Squares: spec-

tral graph wavelets [8]. Triangles: diffusion wavelets [6].

5. CONCLUSIONS

In this paper we described metrics for signals on graphs that quan-

tify precisely how well-localized they are in the graph and spectral

domains. These metrics can be used to evaluate the performance of

existing wavelet transforms in the literature. We further described a

scheme for bounding the localization in both domains, and compared

a few existing wavelet transforms on graphs to the new bounds.
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[1] M. Vetterli and J. Kovačević, Wavelets and Subband Coding. En-

glewood Cliffs, NJ: Prentice Hall, 1995.

[2] M. Belkin, “Problems of learning on manifolds,” Ph.D. disserta-

tion, University of Chicago, Chicago, Illinois, 2003.

[3] E. Giné and V. Koltchinskii, “Empirical graph Laplacian approx-

imation of Laplace-Beltrami operators: Large sample results,”

IMS Lecture Notes-Monograph Series, vol. 51, pp. 238–259,

2006.

[4] P. Milanfar, “A tour of modern image filtering,” To Appear in

IEEE Signal Process. Mag., 2012.

[5] H. Hoppe, “Progressive meshes,” in Proc. SIGGRAPH, 1996, pp.

99–108.

[6] R. R. Coifman and M. Maggioni, “Diffusion wavelets,” Appl.

Comput. Harmonic Analysis, vol. 21, no. 1, pp. 53–94, Jul. 2006.

[7] W. Wang and K. Ramchandran, “Random multiresolution repre-

sentations for arbitrary sensor network graphs,” in Proc. IEEE

Int. Conf. Acoust., Speech, and Signal Proc., 2006.

[8] D. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on

graphs via spectral graph theory,” Appl. Comput. Harmonic Anal-

ysis, vol. 30, pp. 129–150, Mar. 2011.

[9] S. Narang and A. Ortega, “Local two-channel critically sampled

filter-banks on graphs,” in Proc. IEEE Int. Conf. on Image Proc.,

2010, pp. 333–336.

[10] A. Agaskar and Y. M. Lu, “An uncertainty principle for functions

defined on graphs,” in Proc. SPIE Conference on Wavelets and

Sparsity, San Diego, CA, 2011.

[11] ——, “Uncertainty principles for signals defined on graphs,” in

preparation, 2012.

[12] F. R. K. Chung, Spectral graph theory. Providence, RI: Ameri-

can Mathematical Society, 1997.

[13] P. Lancaster and M. Tismenetsky, The theory of matrices, 2nd ed.

New York: Academic Press, 1985.

3496


