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ABSTRACT

A novel numerical design approach for allpass transformed DFT
filter-banks with subsampling is proposed. Such frequency warped
filter-banks possess a non-uniform time-frequency resolution which
is of interest, e.g., for speech and audio processing. The coefficients
of the FIR synthesis filters are determined by a constrained least-
squares error (CLSE) design. Thereby, the stopband energy of the
synthesis filters is minimized with the constraint for perfect recon-
struction (PR). This design by quadratic programming accounts also
for polyphase network (PPN) filter-banks where the prototype fil-
ter degree exceeds the number of subbands to facilitate an enhanced
frequency selectivity. In contrast to known designs for allpass trans-
formed analysis-synthesis filter-banks (AS FBs), perfect signal re-
construction can be achieved effectively with synthesis filters featur-
ing a pronounced bandpass characteristic.

Index Terms— allpass transformation, frequency warping,
filter-banks, quadratic programming, perfect reconstruction

1. INTRODUCTION

The design of a digital filter-bank with non-uniform time-frequency
resolution by means of an allpass transformation is a well-known
technique [1]. Such frequency warped filter-banks can mimic the
Bark frequency scale, which models the frequency resolution of the
human auditory system, with great accuracy [2]. This feature is ex-
ploited, among others, for speech enhancement systems, e.g., [3, 4].
One benefit of warped filter-banks is their lower complexity and sig-
nal delay in comparison to tree-structured filter-banks whose delay
increases exponentially with the number of stages.

The design of allpass transformed analysis-synthesis filter-banks
(AS FBs) has been addressed by several authors [3–15]. An early
approach is to apply the allpass transformation to a uniform FIR
analysis-synthesis filter-bank (AS FB), which results IIR analysis
and synthesis filters. The phase distortions caused by the frequency
warping can be (partly) compensated by a phase equalizer at the
filter-bank output [3, 10, 12]. Alternatively, the emerging aliasing
and linear distortions can be minimized, but not eliminated, by a
prototype filter design based on quadratically constrained quadratic
programming [5].

Another approach to achieve near-perfect reconstruction (NPR)
is to use an FIR synthesis filter-bank. The closed-form designs of
[9, 10, 13] minimize the linear distortions (but not the aliasing) by
phase equalization at the synthesis side. In [4], a least-squares er-
ror (LSE) minimization is presented to reduce aliasing and linear dis-
tortions caused by the warped analysis filter-bank. A complete alias-
ing cancellation can be achieved by the constrained least-squares er-
ror (CLSE) design of [14], which minimizes linear amplitude and

phase distortions with the constraint for a linear time-invariant (LTI)
system.

An FIR synthesis filter-bank which achieves perfect reconstruc-
tion (PR) can be obtained by an analytical closed-form solution,
which has been shown independently in [6–8]. A severe drawback
of this approach is the missing bandpass characteristic of the syn-
thesis filters (see [8]). This can cause high signal distortions if sub-
band processing takes place. Moreover, these designs cannot be used
for a polyphase network (PPN) filter-bank where the degree of the
analysis prototype filter exceeds the number of subbands.

In this paper, a novel CLSE design for an allpass transformed
PPN DFT AS FB is proposed. It can achieve PR with synthesis fil-
ters having a high frequency selectivity. In comparison to a recently
proposed unconstrained LSE design for PR [15], the devised syn-
thesis filters have a lower complexity and achieve a higher stopband
attenuation due to the constrained optimization.

2. THE ALLPASS TRANSFORMED DFT FILTER-BANK

An allpass transformed digital system is obtained by replacing its
delay elements by allpass filters [1]: z−1 → A(z). For this allpass
transformation, an allpass filter of first order with system function

A(z) =
1− a∗z

z − a
, |z| > |a|, a ∈ {C∣∣ |a| < 1

}
(1)

and frequency response

A
(
ejΩ
)
=

1− a∗ejΩ

ejΩ − a
= e−jϕa(Ω) (2)

is considered. The asterisk ∗ denotes the conjugate complex value
and C the set of all complex numbers. The M allpass transformed
analysis filters of a DFT filter-bank have the transfer functions

H̃i(z) =

L−1∑
n=0

h(n) ·W−n i
M · An(z) (3)

with i ∈ { 0, 1, . . . ,M − 1 } and WM = exp {−j 2π/M} (e.g.,
[9, 13]). The length of the analysis prototype filter h(n) is assumed
to be an integer multiple of M w.l.o.g. so that L = lM M . This non-
uniform DFT analysis filter-bank can be implemented efficiently by
a polyphase network (PPN)

H̃i(z) =
M−1∑
λ=0

H
(M)
λ

(
AM (z)

)
·W−λi

M ·Aλ(z) (4)

H
(M)
λ

(
AM (z)

)
=

lM−1∑
m=0

h(mM + λ) ·AmM (z) . (5)
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Fig. 1. Polyphase network (PPN) implementation of the allpass
transformed DFT analysis filter-bank with downsampling by R.

A diagram of this PPN implementation of the analysis filter-bank is
provided by Fig. 1. The inverse discrete Fourier transform (IDFT)
can be calculated efficiently by the inverse fast Fourier transform
(IFFT). Here, the same subsampling rate R is taken for each fre-
quency band so that only the allpass filters must be operated at the
input sampling rate where all other operations of the PPN analysis
filter-bank are executed at a reduced rate.1 The uniform DFT filter-
bank is included as special case for a = 0 where A(z) = z−1.

The considered FIR synthesis filters are given by

Fi(z) =
M−1∑
ρ=0

W
−i (ρ+1)
M ·QM−1−ρ(z) (6)

=

M−1∑
ρ=0

W
−i (ρ+1)
M

N−1∑
n=0

qM−1−ρ(n) · z−n (7)

with channel index i ∈ {0, 1, . . . ,M − 1}. The efficient implemen-
tation of this synthesis filter-bank is illustrated in Fig. 2. After some
manipulations, Eq. (7) can be expressed by the matrix notation

Fi(z) = vvvTi ·DDDT (z) · ppp (8a)

with vvvi =
[
W−M i

M , W
−(M−1) i
M , . . . , W−i

M

]T
(8b)

DDD(z) = IIIM ⊗ dddN (z) (8c)

dddN(z) =
[
1, z−1, . . . , z−(N−1)

]T
(8d)

ppp =
[
qqqT0 , qqq

T
1 , . . . , qqq

T
M−1

]T
(8e)

qqqρ = [ qρ(0), qρ(1), . . . , qρ(N − 1) ]T (8f)

i, ρ ∈ {0, 1, . . . ,M − 1} .
Bold lower-case variables refer to vectors and matrices are denoted
by bold upper-case variables. The superscripts T and H mark the
transpose and conjugate transpose of a vector or matrix. The M×M
identity matrix is given by IIIM and ⊗ marks the Kronecker product
of two matrices.

3. NEW SYNTHESIS FILTER-BANK DESIGN

The z-domain representation for the reconstructed input signal of the
considered AS FB is given by

X̂(z) =
1

R

R−1∑
r=0

X(zW r
R)

M−1∑
i=0

H̃i(zW
r
R) · Fi(z) (9)

1This is not fully considered in Fig. 1 for the sake of clarity.
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Fig. 2. DFT synthesis filter-bank with upsampling by R.

with R ∈ {1, 2, . . . ,M}. In general, an AS FB (with subsampling)
is a linear periodically time-varying (LPTV) system with period R.
To account for this behavior, the overall transfer function of the filter-
bank is determined by R time-shifted unit sample sequences as in-
put, i.e., X(z) = z−ν and the reconstructed input signal for this case
is denoted by X̂ν(z). Eq. (9) leads now to the new transfer function

Tν(z) =
X̂ν(z)

z−ν
=

1

R

R−1∑
r=0

W−r ν
R

M−1∑
i=0

H̃i(zW
r
R) · Fi(z) (10)

with ν ∈ {0, 1, . . . , R − 1}. Inserting Eq. (8a) yields

Tν(z) =

(
1

R

R−1∑
r=0

W−r ν
R

M−1∑
i=0

H̃i

(
zW r

R

) · vvvTi ·DDDT (z)

)
︸ ︷︷ ︸

.
= ξξξν(z) ∈ C

1×MN

·ppp .

(11)

A linear time-invariant (LTI) AS FB with PR is obtained, if the trans-
fer function of Eq. (11) fulfills the conditions

Tν(z)
!
= z−Do ∀ ν ∈ {0, 1, . . . , R − 1} (12)

where Do marks the (overall) signal delay of the AS FB. The vector
notation of Eq. (11) allows to rewrite Eq. (12) as follows⎡⎢⎢⎢⎣

ξξξ0(z)
ξξξ1(z)

...
ξξξR−1(z)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸
.
= ΞΞΞR(z)

·ppp !
= z−Do · 111R . (13)

A column vector with R ones is marked by 111R. The requirement of
Eq. (13) shall be fulfilled for K discrete z-values on the unit circle

z = W μ
K = e−j 2π

K
μ, μ ∈ {0, 1, . . . ,K − 1} . (14)

With the (stacking) notation

AAA
.
=

⎡⎢⎢⎢⎣
ΞΞΞR(1)

ΞΞΞR(WK)
...

ΞΞΞR

(
WK−1

K

)
⎤⎥⎥⎥⎦ ∈ C

KR×MN (15)

www
.
=

⎡⎢⎢⎢⎣
111R

W−Do
K · 111R

...
W

−(K−1)Do
K · 111R

⎤⎥⎥⎥⎦ ∈ C
KR×1, (16)
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Eq. (13) turns now into a set of KR linear equations

AAAppp = www . (17)

These equations are overdetermined if KR > MN . In this case, an
(unconstrained) least-squares error (LSE) solution is given by

p̂pp =
(
AAAHAAA

)
−1

AAAHwww (18)

if the matrix AAAHAAA has full rank. Otherwise a solution exists as well
but is non-unique. It should be noticed that the solution of Eq. (18)
is not equal to that of [15] where a another synthesis filter-bank with
L instead of M sub-filters Qρ(z) is considered such that matrices
and vector ppp of Eq. (18) are of lower dimensions than those of [15]
for L > M . The LSE solution of Eq. (18) strives for a filter-bank
with perfect signal reconstruction, but it does not provide necessarily
synthesis filters with a sufficient stopband attenuation. Therefore,
an additional design constraint is introduced, which minimizes the
overall stopband energy of the synthesis filters

ES =
M−1∑
i=0

∫
Ω∈IS(i)

∣∣∣Fi

(
ejΩ
)∣∣∣2 dΩ . (19)

The frequency intervals for the stopbands are given by

IS(i) =

{
[ Ωr(i), 2π − Ωr(i) ] , i = 0

[ 0, Ωl(i) ] ∪ [ Ωr(i), 2π ] , i ∈ { 1, . . . ,M − 1 }.
(20)

The left and right stopband edges are determined by

Ωl(i) = ϕ[−1]
a

(
2π

M
i− Ωs

2

)
(21)

Ωr(i) = ϕ[−1]
a

(
2π

M
i+

Ωs

2

)
(22)

with Ωs denoting the (normalized) stopband frequency of the ori-
ginal prototype lowpass filter and ϕ

[−1]
a (Ω) marks the inverse func-

tion of the allpass phase response of Eq. (2) to account for the warped
subband filters. The allpass coefficient of Eq. (2) can be written as

a = αej γ with − 1 < α < 1, 0 ≤ γ < 2π (23)

such that the inverse allpass phase response is given by (e.g., [6])

ϕ[−1]
a (Ω) = γ + 2 arctan

(
1− α

1 + α
tan

Ω− γ

2

)
. (24)

It is obvious from Eq. (8a) that∣∣Fi

(
ejΩ
)∣∣2 = pppH ·DDD∗

(
ejΩ
) · vvv∗i · vvvTi ·DDDT

(
ejΩ
)︸ ︷︷ ︸

.
= CCCi(Ω) ∈ C

MN×MN

·ppp (25)

so that Eq. (19) can be expressed by the matrix formulation

ES = pppH ·
(

M−1∑
i=0

∫
Ω∈IS(i)

CCCi(Ω) dΩ

)
· ppp = pppHSSSppp . (26)

The positive definite matrix SSS ∈ R
MN×MN can be calculated by

numerical integration. The vector ppp with the coefficients of the FIR
synthesis filters can now be determined by the following equality
constrained quadratic program (ECQP)

minimize
ppp

pppH SSSppp subject to AAAppp = www . (27)

This convex optimization problem has a unique optimum and can be
solved easily, e.g., by using the function lsqlin of the MATLAB
optimization toolbox.
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Fig. 3. Magnitude of the bifrequency system function for the new
ECQP filter-bank design.

4. DESIGN EXAMPLES

The design of an allpass transformed PPN DFT AS FB with M = 16
subbands and analysis prototype lowpass filter

h(n) =

√
R

2M

(
1−

√
2 cos

( π

M
(n+ 0.5)

))
(28a)

n ∈ {0, 1, . . . , L− 1}, L = 2M (28b)

is considered, cf., [13].2 A subsampling rate of R = 4 and a real
allpass coefficient of a = 0.4 are taken. Such an allpass coeffi-
cient provides a good approximation of the Bark scale for a sam-
pling frequency of 8 kHz, cf., [2]. The ECQP design of Eq. (27) is
performed with parameters K = MN , N = 72, Do = 64 and
Ωs = 1.1 · 2π/M .

The obtained solution fulfills the constraints of Eq. (27) with an
error norm of ‖AAAp̂pp − www‖2 = 5.6 · 10−13. This is actually a PR
solution given that filter-bank design and implementation have to
be performed with finite arithmetic precision in practice. The PR
property of the filter-bank becomes obvious by analyzing its transfer
functions. A filter-bank is a multi-rate system which can be ana-
lyzed by its system response function tbi(k2, k1), which is the re-
sponse of a system at time instant k1 to a unit sample sequence at
k2. The two-dimensional frequency-domain representation is given
by the bifrequency system function Tbi

(
ejΩ2 , ejΩ1

)
[16], which is

plotted in Fig. 3 for the new design. It shows a PR filter-bank since
no side-diagonals with alias components occur and the main diago-
nal, which represents the linear transfer function of the filter-bank,
is a straight line. In contrast, the bifrequency system functions of
the NPR designs presented in [9, 13] exhibit aliasing as well as lin-
ear distortions. The plot of the transfer function of Eq. (10) for
ν = 0 in Fig. 4 shows deviations of less than ±1.3 ·10−13 dB. (Such
marginal deviations occur also on the main diagonal of Fig. 3.) The
phase response of T0

(
ejΩ
)

is linear and equal to Do Ω with devia-
tions of less than ±10−13 (not plotted). Errors of such magnitude
can also be observed for a numerical analysis of the PR filter-banks
of [6–8]. In contrast to these closed-form designs, the presented ap-
proach also applies for longer analysis prototype filters (L > M)
and it achieves a distinctive bandpass characteristic for the synthesis
filters as demonstrated by Fig. 5.

Fig. 6 exemplifies that the new ECQP design results synthesis
filters with a much smaller transition bandwidth than for the uncon-
strained LSE design of [15] and the closed-form NPR design of [9].

2It should be noted that neither the DFT or IDFT of Fig. 1 and Fig. 2
perform a scaling by 1/M .
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In addition, the design of [9] achieves no PR and exhibits a signi-
ficantly lower stopband attenuation despite its higher sub-filter de-
gree N and signal delay Do, respectively: The synthesis lowpass
filter of the new design achieves here a stopband energy of only
5.74 · 10−3 while the stopband energy of the LSE design of [15]
equals 9.31 · 10−3 and that of the NPR design of [9] amounts even
to 28.14 · 10−3. (Similar results are obtained for the other synthesis
filters). Thus, the new design can achieve both, PR and synthesis
filters with a high stopband attenuation. The ability to achieve these
targets with high accuracy depends of course on the design parame-
ters where the choice Do = N − 2R turns out to be favorable.

5. CONCLUSIONS

A novel design of an allpass transformed DFT AS FB with subsam-
pling by means of quadratic programming is presented. The coeffi-
cients of the FIR synthesis filters are determined by the design target
to minimize their stopband energy with the constraints for PR and a
prescribed signal delay. This quadratic LSE minimization with lin-
ear equality constraints can be easily solved by common (MATLAB)
programs. In contrast to previous NPR designs [3–5, 9–14], the new
approach can achieve PR with a high numerical accuracy. Thereby,
synthesis filters with a high stopband attenuation are achieved as op-
posed to the closed-form PR designs of [6–8] and the new design
applies also for PPN filter-banks, which enables the use of subband
filters with a high frequency selectivity. Due to these properties, the
devised non-uniform filter-bank is of special interest for applications
such as speech and audio processing.
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[12] H. W. Löllmann and P. Vary, “Parametric Phase Equalizers for Warped
Filter-Banks,” in Proc. of European Signal Processing Conference
(EUSIPCO), Florence, Italy, Sept. 2006.
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[15] H. W. Löllmann and P. Vary, “Least-Squares Design of DFT Filter-
Banks based on Allpass Transformation of Higher Order,” IEEE Trans.
on Signal Processing, vol. 58, no. 4, pp. 2393–2398, Apr. 2010.

[16] R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, New Jersey, 1983.

3484


