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ABSTRACT
Complex-valued conjugate symmetric Hadamard transform (C-
CSHT) is a variant of complex Hadamard transform and effective
for some signal processing and communication applications. Its
closed-form factorization of the general N -channel (N = 2m) case
was recently proposed, however, there still exist a room to find an ef-
fective factorization especially for unified factorization of C-CSHT
and its real-valued transform counterpart (R-CSHT). In this paper,
we present another simple closed-form factorization of C-CSHT
based on that of R-CSHT. The proposed factorization is applicable
for both complex- and real-valued CSHTs with one factorization.
Furthermore, the relationship with the common block transform,
DCT, is revealed.

Index Terms— Hadamard transform, complex Hadamard trans-
form, conjugate symmetric Hadamard transform, DCT, binDCT

1. INTRODUCTION

Hadamard transform (HT) has been widely studied for long years
and used for various signal processing and communication appli-
cations [1]. It has very low computational complexity since each
element of its transformation matrix is 1 or −1: It is often called
antipodal coefficient [2, 3]. There exists various extended versions
of HT, such as lapped HT [2], complex HT [4, 5], etc.

As one of the extensions of HT, complex-valued conjugate sym-
metric HT (C-CSHT) was proposed by Aung et al. [6,7]. It is a block
transform and each element of the transform is antipodal coefficient
or its complex counterpart, i.e., ±1 and ±j, where j2 = −1. It is a
possible extension of HT into the complex-valued transforms, and it
is used for signal analysis and synthesis, image watermarking, and
so forth. As a real-valued counterpart, there exists the real version of
CSHT, which is denoted as R-CSHT hereafter. It has a comparable
performance with HT in spite of its less computational complexity.

In the original paper [7], the factorizations of both C-CSHT and
R-CSHT were shown for the case N = 8, where N is the number of
filters. Unfortunately, these complex- and real-valued factorizations
were not consistent: One factorization cannot be derived straightfor-
wardly from another. Additionally, no general factorizations about
N were presented. Recently, a C-CSHT factorization for the general
N was proposed by Bouguezel et al. [8]. However, its implementa-
tion is restricted for the C-CSHT version and its R-CSHT counter-
part cannot be trivially derived.
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Table 1. Comparison of CSHT factorizations.

[7] [8] Ours

N 8 2m 2m

C-CSHT Factorization � � �
R-CSHT Factorization � �

Consistency b/w C- and R-CSHT �

Briefly speaking, the previous methods have the following issues
to be solved:

1. General factorization: CSHT should be factorized for the case
of the general N and have factorizations for both complex-
and real-valued CSHT.

2. Consistency of factorization: C-CSHT and R-CSHT should
be factorized based on one approach.

In this paper, we present the most general factorization of CSHT
so far. It can be applied for the general N , and both of the complex-
and real-valued transforms are derived from one factorization ap-
proach. The comparison of CSHT factorization is summarized in Ta-
ble 1. It should also be mentioned that our factorization is relatively
simple compared to the previous one. Finally, thanks to our factor-
ization, the structural relationships between R-CSHT and a special
DCT, binDCT [9], are revealed.

1.1. Notation

Matrices are shown as upper-case bold face letters. The N × N
identity and reverse-identity matrices are represented as IN and JN ,
respectively. The null matrix is 0N . The subscript usually refers to
as the size of the matrix unless it is specified. Sometimes the size of
matrix is omitted when it is obvious. Matrices PX is a permutation
matrix which reorders rows of the transformation matrix.

2. CSHT

In this section, first we review the structure of CSHT from its original
version, and then the recently proposed factorization is shown. For
simplicity, the structure of the permutation matrix just after the core
transformation is omitted since the space is limited and it does not
affect computational complexity.
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2.1. Original CSHT

In the original paper [7], the factorizations of C-CSHT and R-CSHT
are separately presented and they are implemented in the case N =
8. The C-CSHT is factorized as follows:

H8 =PH8

⎡
⎢⎣
W2

W2

W2

W2

⎤
⎥⎦
⎡
⎢⎣
I2

C2

I2
I′2

⎤
⎥⎦

×
[
W4

W4

] [
I4

C4

]
W8

(1)

where

WN =

[
IN/2 IN/2

IN/2 −IN/2

]

CN =

[
IN/2 0
0 jIN/2

]
, I′2 =

[
1 0
0 −1

]
.

The matrix form of H8 is shown as

H8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 1 j j −1 −1 −j −j
1 j −1 −j 1 j −1 −j
1 −1 −j j −1 1 j −j
1 −1 1 −1 1 −1 1 −1
1 −1 j −j −1 1 −j j
1 −j −1 j 1 −j −1 j
1 1 −j −j −1 −1 j j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2)

Depending on the structure of PH8 in (1), the CSHT is called
natural- or sequency-ordered CSHT [7, 8].

Furthermore, R-CSHT SN can be derived from HN as

SN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

HN (0, l)
(J {HN (1, l)})− (J {HN (N − 1, l)})/2
(R{HN (1, l)}) + (R{HN (N − 1, l)})/2

...
(R{HN (N/2− 1, l)}) + (R{HN (N/2 + 1, l)})/2

HN (N/2, l)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(3)

where l is the column index of the matrix and R{·} and J {·} repre-
sent real and imaginary parts of the number, respectively. However,
this postprocessing system is not effective to implement SN itself.
Therefore, a factorization of S8 (eight-channel case) is shown in [7]
as follows:

S8 = PS8

⎡
⎢⎣
W2

J2

I′2W2

W2

⎤
⎥⎦[W4

Ĵ4

]
W8 (4)

where Ĵ4 =

[
0 I2
I2 0

]
. Its matrix form is

S8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
0 0 1 1 0 0 −1 −1
1 1 0 0 −1 −1 0 0
0 1 0 −1 0 1 0 −1
1 0 −1 0 1 0 −1 0
1 −1 0 0 −1 1 0 0
0 0 −1 1 0 0 1 −1
1 −1 1 −1 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)
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Fig. 1. CSHT factorization in the original paper. Top: C-CSHT.
Bottom: R-CSHT.

The factorizations of H8 and S8 are illustrated in Fig. 1. Unfortu-
nately, the relationships between these two factorizations were not
very clear in spite of the fact that one of them is just a counterpart of
another.

2.2. Closed-Form Factorization of CSHT

The algorithm used in the original paper [7] is only given for the
case N = 8. In [8], the closed-form representation of C-CSHT for
N = 2m {m ∈ N} was presented. Its structure is represented as
follows:

HN =P0

(
m−2∏
i=1

(I2m−i ⊗W2 ⊗ I2i−1)

×

⎛
⎜⎜⎝
⎡
⎢⎢⎣
[
I2 0
0 C2

]
0

0 I2m−i−1−1 ⊗
[
I2 0
0 I′2

]
⎤
⎥⎥⎦⊗ I2i−1

⎞
⎟⎟⎠
⎞
⎟⎟⎠

× (I2 ⊗W2 ⊗ IN/4)

([
I2 0
0 C2

]
⊗ IN/4

)
(W2 ⊗ IN/2)

(6)

where ⊗ represents a Kronecker product operator. This represen-
tation requires the same number of arithmetic operations as those
for the original C-CSHT for N = 8, but it presents a more general
structure according to N .

3. PROPOSED FACTORIZATION

In this section, we present another closed-form factorization of
CSHT. It is expressed as a combination of R-CSHT and a post-
processing with a complex-valued matrix. Similar to the previous
factorization [8], we consider the case for N = 2m {m ∈ N}.

In contrast to the other factorizations, we start from R-CSHT in
(5). The factorization of R-CSHT is represented as follows:

SN = P1

[
SN/2

W̄N/2

]
ĪN (7)
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Fig. 2. Eight-point CSHT. The factorization in the dashed box is
R-CSHT.

where

W̄N =

N/4∏
k=1

[
IN/4k ⊗W2k

IN/4k ⊗W′
2k

]
(8)

and

ĪN =

[
IN/2 JN/2

JN/2 −IN/2

] [
IN/2

JN/2

]
(9)

W′
N =

[
IN/2 IN/2

−IN/2 IN/2

]
. (10)

Moreover, the smallest martix of R-CSHT is of the size 4 × 4 and
defined as

S4 =

[
W2

I2

]
Ī4. (11)

Obviously, it is a recursive factorization and has a relatively simple
implementation.

Furthermore, C-CSHT in our factorization can be easily derived
from the definition (3):

HN = P2

⎡
⎢⎢⎢⎢⎢⎣

1

W̃2

. . .

W̃2

1

⎤
⎥⎥⎥⎥⎥⎦SN (12)

in which

W̃2 = W′
2

[
j 0
0 1

]
=

[
1 j
−1 j

]
. (13)

Clearly, our factorization gives both real and complex factorizations
of CSHT with one recursive implementation. The structure is shown
in Fig. 2 for N = 8, and Fig. 3 for N = 16 (R-CSHT only).

3.1. Computational Complexity

Even in our factorization, the computational complexity is the same
as the other CSHT factorizations. The number of complex multipli-
cations by j in C-CSHT is clearly N/2 − 1 since W̃2 is the only
factor of the complex multiplications in our factorization. The num-
ber is strictly the same as those mentioned in [7,8]. Furthermore, the
number of additions/subtractions in our factorization is N log2 N ,
which is also the same as the previous factorization.

For R-CSHT, the number of butterfly matrices required 18 addi-
tions/subtractions for N = 8 in the original paper. It is also the same
as that for our factorization (see the dashed box in Fig. 2).
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Fig. 3. 16-point R-CSHT based on our factorization where dashed
boxes represents four- and eight-point R-CSHTs.

As mentioned in Section 1, the original paper presented factor-
izations of both C-CSHT and R-CSHT only for the case N = 8 and
the factorization of R-CSHT cannot be derived from that of C-CSHT
straightforwardly (and vice versa). Moreover, the method in [8] is a
general C-CSHT factorization in terms of N , however, that of R-
CSHT was not shown. Consequently, our factorization gives the
consistent and general form of CSHT for both real and complex ver-
sions.

4. RELATIONSHIP WITH DCT

In this section, we reveal the relationship between R-CSHT and
DCT. The DCT has a lot of efficient factorizations for software/hardware
implementations. In this paper, we focus on the one named
binDCT [9, 10] which is based on a lifting factorization of the
DCT.

The binDCT is known as a computationally effective form of
the DCT. It approximates DCT’s transformation matrix with the lift-
ing implementation [11]. Originally, it is based on Chen’s factoriza-
tion [12] and Loeffler’s one [13]. We consider the former in this
paper. It is implemented with butterfly matrices and several lift-
ing steps and gives multiplierless representations of the DCT. Based
on the tradeoff between the complexity and the performance, the
binDCT has many configurations. Here, we focus on the simplest
version of the binDCT: binDCT-C9 in [9]. The factorizations of
the general binDCT and binDCT-C9 are illustrated in Fig. 4. It
is clear that binDCT-C9 has a quite close structure to that of R-
CSHT. In fact, R-CSHT is the same as binDCT-C9 if the rightmost
matrix in (9) is removed. Their comparison is illustrated in Fig.
5(a) and (b). The computational complexities of binDCT-C9 and
R-CSHT are the same each other since the upper right lifting matrix
of binDCT-C9 in Fig. 4 can be represented as one butterfly matrix
W2 as shown in Fig. 5(a). This relationship is effectively utilized
for software/hardware implementation of CSHT since both of C- and
R-CSHTs can be realized easily if we have the binDCT architecture.

It is also mentioned that HT is a special version of the binDCT
[9] . HT based on the binDCT factorization is shown in Fig. 5(c). By
appending three butterfly matrices and a trivial J2, we can obtain HT
from binDCT-C9. Consequently, these three simple integer trans-
forms are interchangeable each other and binDCT-C9 will present
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Fig. 4. Structures of binDCT where pn and un are the parameters
for lifting steps (scaling parameters are omitted for simplicity). Top:
General binDCT structure based on Chen’s factorization. Bottom:
BinDCT-C9.

the simplest form among them. Additionally, the general structure
of CSHT would be derived from the binDCT perspective, which is
our ongoing work.

5. CONCLUSIONS

In this paper, we present a general factorization of conjugate sym-
metric complex Hadamard transform. It is based on the real-valued
transform of CSHT, and its complex-valued counterpart can be easily
implemented. The structure covers both real and complex versions
of CSHT and any N = 2m. Furthermore, the structure comparisons
among three simple integer transforms are shown.
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