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ABSTRACT
We derive a new set of necessary and sufficient conditions for the
filter coefficients of the two-scale difference equation to yield an or-
thogonal wavelet of compact support. The conditions constitute a
linear set of equations of an arbitrary decision vector of half the filter
size. The vector of the filter coefficients is a differentiable function
of the decision vector. The formulation enables the optimization of
the filter design under any regular objective function. The proposed
parametrization is used to design customized orthonormal wavelets
and to reproduce the classical orthogonal wavelets as a solution of a
nonlinear optimization problem.

Index Terms— orthogonal wavelets, design, null-space.

1. INTRODUCTION

The construction of compactly supported orthonormal wavelets usu-
ally starts from the two-scale difference equation [1] or equivalently
the multiresolution analysis [2] to derive conditions on the wavelet
filters coefficients. In this work, we derive new conditions for the
construction of orthonormal wavelets with compact support. The
new parametrization uses a linear algebra approach to derive the
equivalent conditions on the filter coefficients of the two-scale dif-
ference equation. This results in a system of linear equations whose
solution is the wavelet filter coefficients and this parametrization is a
differentiable function, almost everywhere, in the design parameters.
This parametrization does not restrict the values of the decision vari-
ables and offers new flexibility in the design of orthogonal wavelets.
In particular, the vector whose entries are the wavelet filter coeffi-
cients is shown to be a basis of the null space of a special matrix that
is parameterized by the decision variables. This enables subspace
wavelet design techniques where desired wavelet features are set as
linear constraints and the wavelet design is treated as a standard op-
timization problem.

Throughout the paper, We use bold-faced capital letters for
matrices, and bold-faced small letters for column vectors. A′

denotes the transpose of the matrix A (all matrices and vec-
tors are assumed real). The notation ã of a column vector a =
[a(0), a(1), a(2), ..., a(2k − 1)]′ is:

ã � [a(2k − 1) − a(2k − 2) a(2k − 3) . . . a(1) − a(0)]′ (1)

2. ORTHOGONAL WAVELETS WITH COMPACT
SUPPORT

Consider the two-scale difference equation [3]

φ(x) =
√
2

N∑
n=0

hnφ(2x− n) (2)

The scaling function φ(x) is related to the mother wavelet ψ(x) by

ψ(x) =
√
2

N∑
n=0

gnφ(2x− n) (3)

By choosing

g(n) = (−1)nh(N − 1− n) (4)

the necessary and sufficient conditions on the lowpass filter {h(n)}
such that ψ(x) in (3) is an orthonormal wavelet with compact sup-
port, are [1], [4], ∑

n

h(n)h(n− 2i) = δ(i) for all i (5)∑
n

h(n) =
√
2 (6)∑

n

(−1)nh(n) = 0 (7)

We assume without loss of generality that the length of h(n) is 2K+
2 where K is even. The total number of independent conditions on
{h(n)} is K + 2.

A single wavelet decomposition stage would involve filtering
with {h(n)} and {g(n)} followed by dyadic subsampling. If the
output of the analysis wavelet filters is organized as:

y = [..., xL(−1), xH(−1), xL(0), xH(0), xL(1), xH(1), ...]′ (8)

where xL(n) = (↓ 2)(x ∗ h)(n) and xH(n) = (↓ 2)(x ∗ g)(n) de-
note respectively the subsampled approximation and detailed coeffi-
cients after a single stage wavelet decomposition; then the wavelet
decomposition stage can put in a matrix form [5]

y = Hx (9)

where H is an infinite-dimensional orthonormal matrix defined as:

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
...

. . . 0 U E L 0 0 0 0 0 . . .

. . . 0 0 U E L 0 0 0 0 . . .

. . . 0 0 0 U E L 0 0 0 . . .
. . . 0 0 0 0 U E L 0 0 . . .

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(10)

where the submatrices U, E, and L (each of sizeK×K) are block-
Toeplitz matrices defined as
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U �⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h(2K + 1) h(2K) h(2K − 1) . . . h(K + 3) h(K + 2)
g(2K + 1) g(2K) g(2K − 1) . . . g(K + 3) g(K + 2)

0 0 h(2K + 1) . . . h(K + 5) h(K + 4)
0 0 g(2K + 1) . . . g(K + 5) g(K + 4)
.
.
.

. . .
.
.
.

.

.

.
0 0 0 . . . h(2K + 1) h(2K)
0 0 0 . . . g(2K + 1) g(2K)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

E �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h(K + 1) h(K) . . . h(3) h(2)
g(K + 1) g(K) . . . g(3) g(2)
h(K + 3) h(K + 2) . . . h(5) h(4)
g(K + 3) g(K + 2) . . . g(5) g(4)

.

.

.
.
.
.

. . .
.
.
.

.

.

.
h(2K − 1) h(2K − 2) . . . h(K + 1) h(K)
g(2K − 1) g(2K − 2) . . . g(K + 1) g(K)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

L �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h(1) h(0) 0 . . . 0 0
g(1) g(0) 0 . . . 0 0
h(3) h(2) h(1) . . . 0 0
g(3) g(2) g(1) . . . 0 0

...
. . .

...
...

...
h(K − 1) h(K − 2) h(K − 3) . . . h(1) h(0)
g(K − 1) g(K − 2) g(K − 3) . . . g(1) g(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(13)

It was shown in [6] that if g(n) is computed as in (4), then the Singu-
lar Value Decomposition (SVD) of L,U and E are closely related.
In particular, it was shown that, the rank of L and U is r ≤ K/2
with equal singular values. Further, all the nonzero singular values
are less than one. The SVD of L,U, and E has the form [6]

L =
r∑

i=1

δiwiv
′
i (14)

U = −
r∑

i=1

δiw̃iṽ
′
i (15)

E =
r∑

i=1

si

√
1− δ2i

(
w̃iv

′
i +wiṽ

′
i

)
+

K∑
i=2r+1

wiv
′
i (16)

where the singular values δi ≤ 1 for all i and si ∈ {1,−1}. Note
that, {vi}Ki=2r+1 are in the null space of L+U.

3. NECESSARY AND SUFFICIENT CONDITIONS FOR
ORTHOGONAL WAVELETS

We need to give some definitions before introducing the main result.
Consider a vector v = [v1, v2, . . . , vK ]′. Define the square matrix
Γ(v, σ) of size 2K + 2 as in (17) (at the top of the following page).
The matrix can be written as

Γ(v, σ) =
(

γ̃1 γ1 . . . γ̃K γK ũ u
)′

(18)

where u is an all-ones vector, and γi are vectors of length 2K + 2
defined for 1 ≤ i ≤ K/2 as

γi �
(

0 0 . . . 0 ai

)
(19)

where ai is a vector of size 2i defined or 1 ≤ i ≤ K/2 as

ai �
(
vK vK−1 vK−2 . . . vK−2i+1

)′
ai+K/2 � (vK vK−1 . . . v1 σv1 − σv2 . . . σv2i−1 − σv2i)

′

(20)

By direct substitution and straightforward arithmetic we could show
that, if Γ(v, σ) in (17) is full-rank, then the columns of

Bi =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0

0
... 0

a′
i a′

i−1 0

a′
i−2

...
a′
1

⎞⎟⎟⎟⎟⎟⎟⎠ (21)

constitute a basis of the null space of

Ci =

⎛⎜⎜⎜⎜⎜⎝
ã1 0 0 0 . . . 0

ã2 0 0 . . . 0
ã3 0 . . . 0
...

...
ãi

⎞⎟⎟⎟⎟⎟⎠ (22)

The main result is summarized by the following theorem,

Theorem 1 The necessary and sufficient condition that a vector
h =

(
h(0) h(1) . . . h(2K + 1)

)′ yields an orthogonal
wavelet using the two-scale difference equation is that it is the
solution of the linear system of equations:

Γ(v, σ).h =

⎛⎜⎜⎜⎜⎜⎝
0
0
...
0√
2

⎞⎟⎟⎟⎟⎟⎠ (23)

where Γ(v, σ), as defined in (17), is full-rank.

Proof If h is a wavelet filter then the SVD of the components of the
matrix representation (i.e., U,L and E) is as shown in (14), (15),

and (16). If v =
(
v(1) v(2) . . . v(K)

)′
is a right singular

vector of L with δ < 1 as the corresponding singular value and w
as the corresponding left singular vector, then

Lṽ = 0 (24)

which by simple reorganization yields the first K rows of Γ(v, σ).
Further we have from (14), and (16)

Lv = δw (25)

Ev = −
√

1− δ2w̃ (26)

where we chose the sign in (16) to be negative. then we have

Ev = −
√
1− δ2

δ
L̃v (27)

then by setting

σ �
√
1− δ2

δ
(28)

we get the system of equations

Ev + σL̃v = 0 (29)

which again yields by simple reorganization the second K rows of
Γ(v, σ). Note that the L2-norm of v needs not to be unity because
of the zero in the right hand side. The last two rows in (23) are a
direct consequence of (6) and (7).
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Γ(v, σ) �
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vK−1 −vK 0 0 . . . 0 0 0 0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 0 0 0 . . . 0 0 vK vK−1

vK−3 −vK−2 vK−1 −vK . . . 0 0 0 0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 0 0 0 . . . vK vK−1 vK−2 vK−3

.

.

.
.
.
.

v1 −v2 v3 −v4 . . . vK−1 −vK 0 0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 0 vK vK−1 . . . v4 v3 v2 v1

σv2 σv1 v1 −v2 . . . vK−3 −vK−2 vK−1 −vK 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 vK vK−1 vK−2 vK−3 . . . v2 v1 −σv1 σv2

σv4 σv3 σv2 σv1 . . . vK−3 −vK−2 vK−3 −vK−2 vK−1 −vK . . . 0 0 0 0
0 0 0 0 . . . vK vK−1 vK−2 vK−3 vK−4 vK−5 . . . −σv1 σv2 −σv3 σv4

.

.

.
.
.
.

σvK σvK−1 σvK−2 σvK−3 . . . σv2 σv1 v1 −v2 v3 −v4 . . . vK−1 −vK 0 0
0 0 vK vK−1 . . . v4 v3 v2 v1 −σv1 σv2 . . . −σvK−3 σvk−2 −σvK−1 σvK

1 −1 1 −1 . . . 1 −1 1 −1 1 −1 . . . 1 −1 1 −1
1 1 1 1 . . . 1 1 1 1 1 1 . . . 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)

Conversely, if h is the solution of (23), then (6) and (7) are satisfied.
In the following we show that h also satisfies (5). First, we prove
that ∑

n

h(n)h(n− 2i) = 0 for i > 0 (30)

The nonzero terms in the left hand side in (30) is the inner product
of two vectors yi and zi of size 2(K + 1− i), defined as

yi �
(
h(2i) h(2i+ 1) . . . h(2K + 1)

)′
(31)

zi �
(
h(0) h(1) . . . h(2K + 1− 2i)

)′
(32)

If h satisfies (23), then by direct substitution we get,

CK−izi = 0 (33)

B′
K−iyi = 0 (34)

where Bi and Ci are as defined in (21) and (22) respectively. Hence,
zi is in the null space of CK−i. Then we have

zi = BK−is (35)

for some nonzero vector s. Hence, from (34) we get 〈zi,yi〉 = 0 for
any i > 0.
Now it remains to prove that

∑
n |h(n)|2 = 1. The last two rows in

(23) imply that,∑
n

h(2n) =
∑
n

h(2n+ 1) =
1√
2

(36)

By straightforward arithmetic, we get[∑
n

h(2n)

]2

+

[∑
n

h(2n+ 1)

]2

=∑
n

|h(n)|2 + 2
∑
i>0

∑
n

h(n)h(n− 2i)

From the previous analysis, the second term of the left hand side is
zero and this completes the proof. �

The structure of Γ allows for an efficient solution of h that requires
little computation. This solution also gives more insight to the design

problem using the proposed parametrization. Let G denote the first
2K + 1 rows of Γ, i.e.,

G(v, σ) =
(

γ̃1 γ1 . . . γ̃K γK ũ
)′

(37)

where the vectors in the right hand side are as defined in (18). The
row space of the first 2K rows of G is the union of two disjoint
spaces that are composed of the even and odd rows. Denote the
matrices that contain the first K odd and even rows of G by D and
F respectively. Note that, DF′ = 0. Define the matrix,

Q �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 0 −1
0 0 . . . 0 0 1 0
0 0 . . . 0 −1 0 0
0 0 . . . 1 0 0 0
...

...
...

0 −1 . . . 0 0 0 0
1 0 . . . 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(38)

It is straightforward to show that,

F = DQ (39)

The row spaces of D and F are disjoint. Denote PD and PF as
the projection matrices onto these row spaces respectively. Then the
projection onto the row space of the first 2K rows of G is

P � PD +PF

= PD −QPDQ (40)

where

PD = D′(DD′)−1D (41)

Note that, the matrix to be inverted has only dimension ofK. Define
the component of the last row of G that does not lie in the row-space
of the first 2K rows as:

ū′ � ũ′(I−P) (42)

then PG could be written as:

PG = P+
ūū′

ū′ū
(43)
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Note that, h is in the null space of G and it could be viewed as the
component of the last row in Γ which does not belong to the row
space of G, i.e.,

h =
P⊥

Gu

‖P⊥
Gu‖

(44)

where P⊥
G = I−PG is the orthogonal projection onto the null space

of G, and u is an all-ones column vector.

One advantage of the proposed parametrization in (23) is that
we can find closed-form expressions of the wavelet filter coefficients
at different orders. For K = 2 (i.e., filter order is 6) a closed form is
listed in table 1. The design variables in this case are (v1, v2, σ). Ex-
pression for higher filter order is straightforward using direct arith-
metic which is simply the last row of Γ−1 in (23) scaled by

√
2.

Table 1. Filter Parameterization for K = 2, (where α �
√
2(v21 +

v22)(σ
2 + 1))

Coefficient Expression

h(0) v2(v1 + v2 − σv1 + σv2)/α
h(1) v1(v1 + v2 − σv1 + σv2)/α
h(2) σ(σ − 1)/α
h(3) σ(σ + 1)/α
h(4) v1(v1 − v2 + σv1 + σv2)/α
h(5) −v2(v1 − v2 + σv1 + σv2)/α

Note that the only constraint in the choice of the design param-
eters (v, σ) is that the corresponding matrix Γ is full-rank. There
is no restriction on the values of the parameters, and this simplifies
search procedures in the design optimization problem.

4. DISCUSSION

The main result of this work is that an orthonormal wavelet basis of
compact support could be designed as a function of an almost arbi-
trary vector. If Γ(v, σ) in (17) is full-rank, then each entry of Γ−1

is a differentiable function of the entries of Γ almost everywhere be-
cause it could be expressed as a ratio of two determinants and the
determinant is a continuous function of its entries [7]. Therefore
the coefficients {h(n)}2K+1

n=0 of the two scale difference equation
in (2) could be expressed as a differentiable function of the vector
(v′ σ)′ that constitutes the entries of Γ(v, σ) by solving the linear
system of equations in (23). There is only one loose constraint on
our choice: Γ(v, σ) is full-rank. This formulation allows the de-
ployment of standard optimization techniques that requires a regular
objective function.

Compared to earlier parametrizations of compactly supported
orthonormal wavelets, e.g., [8]-[10], the proposed algorithm pro-
vides a single time-domain parametrization that applies to all fil-
ter sizes and does not require recursive relations at different orders.
Further, for a certain choice of the unknown vector (v′ σ)′ a closed-
form solution could be computed using analytic expressions for the
cofactors of the elements of the last row in Γ(v, σ). Further, there
are no bounds on the values of the decision variables as long as Γ is
full-rank.

The proposed parameterization could be used in a wide class
of applications where optimized design of orthonormal wavelets is
needed. In [11], the proposed parameterization along with the cas-
cade algorithm [4] is used to design orthonormal wavelets and scal-
ing functions of compact support that are matched to a predefined

template. The problem is modeled as a standard nonlinear program-
ming problem that is solved using standard techniques. Interestingly,
the design of the matched scaling function does not require the use of
the iterative cascade algorithm [4]. In [12], the proposed parameteri-
zation was used to design a wide class of useful wavelets that has lin-
ear constraints. In particular, the classical Daubechies wavelets with
maximal number of vanishing moments were reproduced after set-
ting the maximal moments requirement as a linear constraint to the
wavelet design problem. Wavelets with close to linear-phase were
designed using the same procedure. In [13] the proposed param-
eterization was used to design orthogonal boundary wavelet filters
for a perfect-reconstruction finite-length wavelet transform. These
boundary wavelet filters allow for a wider class of boundary linear
extension rather than the common periodic extension that results in
signal discontinuity.

The proposed parameterization is also applicable to orthogo-
nal filter banks with two extra degrees of freedom by dropping the
last two rows of Γ(v, σ) in (17) (that are specific to orthonormal
wavelets). This gives an under-determined linear system of equa-
tions with a nonzero null space whose solutions are two-channel or-
thogonal filter banks.
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