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ABSTRACT

In this paper, we propose an adaptive compressed sensing

scheme that utilizes a support estimate to focus the measure-

ments on the large valued coefficients of a compressible sig-

nal. We embed a “sparse-filtering” stage into the measure-

ment matrix by weighting down the contribution of signal co-

efficients that are outside the support estimate. We present

an application which can benefit from the proposed sampling

scheme, namely, video compressive acquisition. We demon-

strate that our proposed adaptive CS scheme results in a sig-

nificant improvement in reconstruction quality compared with

standard CS as well as adaptive recovery using weighted �1
minimization.

Index Terms— Compressed sensing, adaptive measure-

ments, weighted acquisition, video acquisition

1. INTRODUCTION

Compressed sensing (CS) is a highly effective sub-Nyquist

sampling paradigm for the acquisition of signals that admit

sparse or nearly sparse representations in some transform do-

main. When the signal representation is strictly sparse, exact

signal recovery can be achieved with sufficiently many mea-

surements. However, when the representation is compress-

ible (or nearly sparse), then the reconstruction error is propor-

tional to the best k-term approximation of the signal, where k
is the approximated sparsity level (see for e.g.: [1, 2, 3, 4]).

Let x be an arbitrary signal in R
N and let xk be its best k-

term approximation with support T0. Suppose that we acquire

n � N measurements y = Ax + e, where A is an n × N
measurement matrix and e is measurement noise with a two

norm bounded by ‖e‖2 ≤ ε. Candés, Romberg and Tao [2]

and Donoho [1] show that if n � k log(N/k), then solving

the following �1 minimization problem

minimize
u∈RN

‖u‖1 subject to ‖Au− y‖2 ≤ ε (1)

can stably and robustly recover x from y. In fact, it was shown

in [2] that if x∗ is the solution to (1) and A has the restricted
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isometry property (RIP) with constant δ(a+1)k < a−1
a+1 for

some a > 1, then

‖x∗ − x‖2 ≤ C0ε+
C1√
k
‖xT c

0
‖1, (2)

where C0 and C1 are well-behaved constants that depend on

δ(a+1)k.

The above result shows that if y = Ax and A has RIP

with say δ3k < 1
3 and x were a k-sparse signal, then recov-

ery using �1 minimization would be exact. However, if x were

compressible, then the recovery error (although stable) is pro-

portional to ‖xT c
0
‖1. On the other hand, given the same matrix

A and if it is possible to acquire measurements ỹ = Axk, then

solving (1) using measurements ỹ instead of y would recover

a vector x∗ such that

‖x∗ − xk‖2 = 0 and ‖x∗ − x‖2 = ‖xT c
0
‖2. (3)

Notice from (2) and (3) that under the same RIP conditions,

solving (1) with measurements ỹ results in an error bounded

by the �2 norm of xT c
0

versus its �1 norm when y is used. The

�1 norm of a long non-sparse vector is much larger than its �2
norm. In fact, their ratio could scale proportional to

√
N − k.

This observation raises the question of whether it is pos-

sible to sparsify a signal before compressively sampling it, a

procedure which has an analogue in traditional sampling the-

ory. In traditional Shannon-Nyquist sampling, a bandlimited

analog signal can be reconstructed exactly from sufficiently

many discretized measurements. However, in most practi-

cal applications, signals are not truly bandlimited. To prevent

aliasing in the reconstruction, analog signals are first low pass

filtered to limit the highest frequency content before acquiring

the discrete measurements. Compressed sensing, on the other

hand, deals with discrete signals that have sparse nonzero co-

efficients. In the case of non-sparse compressible signals, we

propose to use “sparse-filtering” (as opposed to low pass fil-

tering) before compressive sampling. However, pre-filtering

would require the acquisition of the full signal to find the loca-

tions of the largest coefficients, information that is generally

not available a priori. Fortunately, in many applications such

as audio and video, it is possible to draw an estimate of the

support of the largest coefficients before acquiring the signal.

In this paper, we propose an adaptive compressed sens-

ing scheme that utilizes a support estimate to focus the mea-

surements on the large valued coefficients of a compressible
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signal. Our scheme is related to the works by [5] and [6]

and motivated by the previous work presented in section 2.

Our scheme, presented in section 3, embeds a sparse-filtering

stage into the measurement matrix by weighting down the

contribution of signal coefficients that are outside the support

estimate with small nonzero weights ω < 1. We then illus-

trate how adaptive CS can be applied to compressive video

acquisition. Finally, we demonstrate through numerical sim-

ulations in section 4 that our proposed adaptive CS scheme

results in a significant improvement in reconstruction quality

compared with standard CS as well as adaptive recovery using

weighted �1 minimization.

2. RELATED WORK

Our proposed scheme is related to the works in [5] and [6]. In

[5], a data-adaptive procedure is proposed that utilizes infor-

mation from previous observations to focus subsequent mea-

surements into subspaces that are increasingly likely to con-

tain true signal components. In [6], a variable density sam-

pling scheme is proposed in which a sampling profile is cho-

sen to minimize the mutual coherence between the sampling

operator and the sparsity basis. Our scheme differs from the

above works in that first, it deals with compressible signals

and second, it focuses the measurements onto the high valued

transform coefficients of the signal by “sparse-filtering” the

signal before acquisition.

Our work is motivated by recent results on adaptive recov-

ery from standard CS measurements using weighted �1 mini-

mization [7]. Given a support estimate set T̃ , the weighted �1
minimization problem is defined as

minimize
u

‖u‖1,w subject to ‖Au− y‖2 ≤ ε (4)

where the weighted �1 norm ‖u‖1,w =
N∑
i=1

wi|xi|, and the

weight vector w is given by

wi =

{
ω, i ∈ T̃ ,

1, i ∈ T̃ c.

Denote by α = |˜T∩T0|
|˜T | the accuracy of T̃ with respect to T0.

It was shown in [7] that if α > 0.5 and the matrix A satisfies
RIP with constant δ(a+1)k < a−γ

a+γ for γ = γ(α, ω) < 1 for

some a > 1, then

‖x∗
ω−x‖2 ≤ C0(α)ε+C1(α)k

−1/2
(
ω‖x

˜T∩Tc
0
‖1 + ‖x

˜Tc∩Tc
0
‖1
)
,

(5)

where C0(α) and C1(α) are well-behaved constants that de-

pend on the measurement matrix A, the weight ω, and the

parameters α and ρ. In fact, if α > 0.5, then the error bound

constants C0(α) and C1(α) are smaller than their correspond-

ing constants in the case of standard �1 minimization (1).

Moreover, empirical studies in [7] have shown that a value

ω ≈ 0.5 results in the most reliable recovery especially when

the accuracy of the support estimate is not known.

The recovery from compressed sensing measurements

does not only depend on the sparsity of the signal but also on

the relative decay of the transform coefficients. The following

proposition from [8] relates the support recovery capabilities

of �1 minimization and the decay of a compressible signal.

Proposition 2.1 ([8]). Suppose that A has the null space
property (NSP) [4] of order k with constant c0 and

min
j∈S

|x(j)| ≥ (η + 1)‖xT c
0
‖1, (6)

where η = 2c0
2−c0

. Then for some s ≤ k, the set S ⊆ T̃ ,

where S = supp(xs) and T̃ is the support of the largest k-
coefficients of the solution to (1).

The proposition states that if the tail of the sorted coeffi-

cients of the signal x decays fast enough, then �1 minimiza-

tion is guaranteed to recovery the support of at least the largest

s coefficients of x. Such a support estimate can then be used

when sampling other signals with a similar support. More-

over, the proposition suggests that if we are able to attenuate

the tail of these similar support signals, then �1 minimization

should recover a larger portion of the support of their large

coefficients.

3. ADAPTIVE COMPRESSED SENSING OF
COMPRESSIBLE SIGNALS

In this section we formulate the adaptive compressed sens-

ing scheme and describe its application to video compressed

sensing.

3.1. Scheme description

As discussed in the introduction, we want to recovery a signal

x ∈ R
N from n � N compressive and noisy measurements

y = Ax+e. We assume that x is a compressible signal and D
is an orthonormal basis that spans the space of x. Suppose that

we have a (possibly inaccurate) estimate T̃ of the support of

the largest ρk coefficients of x for some ρ ∈ R+, and denote

by T0 the support of the best k-term approximation of x.

Contrary to the weighted �1 approach which mixes the

high and low valued coefficients equally into the measure-

ment vector, we wish to downplay the contribution of the low

valued coefficients. For that purpose, we define a weighting

vector w̃ ∈ R
N such that

w̃i =

{
1, i ∈ T̃

ω, i ∈ T̃ c,
(7)

where 0 < ω < 1, and the weighting matrix W ∈ R
N×N

such that

W = Diag(w̃). (8)
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Define the target “filtered” representation z of the signal

x as

z = Wx. (9)

It is easy to see that z and x have the following relation{
z
˜T = x

˜T ,
z
˜T c = ωx

˜T c .
(10)

We are now interested in recovering the vector z from the

adapted measurements ỹ = AWx + e. Notice that for small

ω and reasonably accurate T̃ , the sorted coefficients of z will

have a smaller tail than those of x. We could solve the �1
minimization problem with measurements ỹ:

minimize
u∈RN

‖u‖1 subject to ‖Au− ỹ‖2 ≤ ε

to recover an approximation of u#. However, the weighted �1
results in [7] indicate that since a support estimate is known,

solving the weighted �1 problem results in a better approxi-

mation of the signal than standard �1 minimization.

Consequently, we define the adaptive compressed sensing

(adaptive CS) problem as follows

minimize
z∈RN

‖z‖1,w̃−1 subject to ‖Az − ỹ‖2 ≤ ε, (11)

which results in the target filtered vector z#, the sparse ap-

proximation of z.

Remark 3.1. In order to remain in the compressed sensing

setting, the set T̃ would have to be of size |T̃ | > n. Other-

wise, one should simply acquire x
˜T , i.e. set ω = 0. However,

this approach fails when the support of the signal we are mea-

suring evolves over time, as in the case of video signals. In

such situations, using |T̃ | ≤ n and setting ω > 0 allows |T̃j |
to vary according to the new measurements of frame j. This

prevents from getting stuck with the support of the first frame.

3.2. Application to video acquisition

One natural application for the adaptive CS scheme is video

compressed sensing. Traditional video acquisition techniques

capture a full frame (or image) in the pixel domain at a spe-

cific frame rate. The number of pixels acquired per image

defines the spatial sampling rate, while the number of frames

acquired per second defines the temporal sampling rate. Since

the temporal sampling rate is usually high, a group of adjacent

video frames are temporally correlated which is reflected in

their spatial transform coefficients having large valued entries

in roughly the same locations.

Suppose that the video signal is partitioned into m data

blocks or frames fj , j ∈ {1 . . .m}. For the first block f1,

no prior information is available and an approximation f#
1

of the block is recovered from random measurements y1 =
Rf1 using standard �1 minimization, where R is a random

restriction matrix. For the subsequent data blocks fj , j ∈

{2 . . .m}, a support estimate T̃j−1 is first extracted from the

transform coefficients of the recovered (j − 1)th data block.

We then build the weighting matrix Wj according to (8) and

generate a “sparsifying” matrix Mj = DHWjD. The new

measurements ỹj are adapted such that ỹj = RMjfj and the

corresponding data block is recovered using adaptive CS (11)

with A = RDH resulting in the approximation f#
j = DHz#.

(a)

(b)

Fig. 1. Block diagrams illustrating the difference in acquisi-

tion and recovery between (a) the adaptive compressed sens-

ing scheme and (b) the standard compressed sensing scheme

with adaptive recovery using weighted �1 minimization. For

every data block j ∈ {2 . . . t}, a support set T̃j is identified

from the previous block and a weighting matrix Wj is gener-

ated with weights equal to 1 and ω applied to the sets T̃j and

T̃ c
j , respectively. The sparsifying filters are Mj = DHWjD.

Figure 1 illustrates the difference in sampling structure

and the recovery algorithm between the proposed adaptive

CS and standard CS with adaptive recovery using weighted �1
minimization. The data blocks represent video frames. It can

be seen that the main difference between the two sampling

schemes lies in utilizing the support estimate in the measure-

ment process in the case of adaptive CS.
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Table 1. List of the sampling schemes and recovery algorithms

Sampling scheme Support estimate size Measurement matrix Recovery algorithm

Standard CS —– R min
u

‖u‖1 s.t. RDHu = Rf

Weighted recovery n
2 / log(N/n) R min

u
‖u‖1,w−1 s.t. RDHu = Rf

Adaptive CS 0.7n RDHWD min
u

‖u‖1,w−1 s.t. RDHu = RDHWDf

4. EXPERIMENTAL RESULTS
In this section, we demonstrate the effectiveness of our adap-

tive CS scheme in recovering compressible signals by apply-

ing it to video sequences. We compare the recovery perfor-

mance with that of standard CS using �1 minimization and

adaptive recovery using weighted �1 minimization.

Table 1 lists the sampling parameters and recovery algo-

rithms associated with each scheme. Note that the support

estimate size indicated in the table is the empirically optimal

size for each scheme. We consider two reference video se-

quences: Foreman and Mobile1, at QCIF (176× 144) spatial

resolution. From each video frame, n = N/4 measurements

are acquired, where N = 25344 is the number of pixels in the

recovered video frame.

In the case of standard CS and adaptive (weighted �1) re-

covery, the measurements are simply the readings of n ran-

domly chosen pixels in the CCD/CMOS sensor array. Denote

by R the sampling operator that chooses these n pixels from

the N pixels. On the other hand, the adaptive CS measure-

ments are acquired by multiplying the entire frame with the

matrix RM , where M is the sparse-filtering matrix. In partic-

ular, we choose M = DHW 2D, where D is the two dimen-

sional discrete cosine transform (DCT) matrix and W is a di-

agonal weighting matrix as defined in (8) with ω = 0.5. Fig-

ure 2 shows the recovered SNRs per video frame of the Fore-

man and Mobile sequences using each of the schemes in Table

1. The figure shows that for the Foreman sequence, adaptive

CS achieves an average of 3.7dB gain over standard �1 and

2.73dB gain over weighted �1 minimization. For the Mobile

sequence, the average improvement is 2.3dB over standard �1
and 1.75dB over weighted �1.
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[8] H. Mansour and Ö. Yılmaz, “Weighted �1 minimization with

multiple weighting sets,” in SPIE, Wavelets and Sparsity XIV,

August 2011.

3468


