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ABSTRACT

The classical approach to A/D conversion has been uniform sam-
pling and we get perfect reconstruction for bandlimited signals
by satisfying the Nyquist Sampling Theorem. We propose a non-
uniform sampling scheme based on level crossing (LC) time infor-
mation. We show stable reconstruction of bandpass signals with
correct scale factor and hence a unique reconstruction from only the
non-uniform time information. For reconstruction from the level
crossings we make use of the sparse reconstruction based optimiza-
tion by constraining the bandpass signal to be sparse in its frequency
content. While overdetermined system of equations is resorted
to in the literature we use an undetermined approach along with
sparse reconstruction formulation. We could get a reconstruction
SNR > 20dB and perfect support recovery with probability close
to 1, in noise-less case and with lower probability in the noisy case.
Random picking of LC from different levels over the same limited
signal duration and for the same length of information, is seen to be
advantageous for reconstruction.

Index Terms— Zero Crossing (ZC), Level Crossing (LC),
Sparse Reconstruction, ADCs, Non-uniform Samples (NUS), Com-
pressive Sensing (CS)

1. INTRODUCTION

Natural phenomena, often represented as continuous valued func-
tions, do have a lot of redundancy, owing to the inherent structures
generating the signal. There has been lot of work to remove such re-
dundancy for compact transmission or storage and then reconstruct
the signal from the compact representation. In some other applica-
tions, simply a limited number of samples are available from which
the signal itself or its structural parameters need to be estimated. Re-
cent work in compressive sensing (CS) is pushing signal sampling
and redundancy removal closer, providing new solutions to signal
acquisition as well as showing new applications. We explore in this
paper signal reconstruction from signal dependent non-uniform sam-
ples, in contrast to signal independent uniform samples, along with
sparsity constrained reconstruction.

In contrast to uniform sampling (Nyquist sampling), the signal
can be sampled at preset amplitude level crossing (LC). The signal
x(t), in this scheme is sampled when it or the output of an operator
applied on it, satisfies certain value which triggers the sampling. The
sampling time instant sequence is dictated by the signal and is in gen-
eral non-uniform. Thus, the signal is represented by a sequence of
time instants at which it has crossed the preset level instead of signal
values at preset times as in Nyquist sampling. This scheme is also re-
ferred to as implicit or Lebesgue sampling [1]. Initial work in this re-
gard dates to Logan’s theorem [2] which states the sufficient (but not

Dept. of ECE, Indian Institute of Science, Bangalore, India, email:
{neeraj_sharma, tvsree}@ece.iisc.ernet.in

necessary) conditions for reconstructing an octave bandwidth signal
from only the zero crossings upto a scale factor. Multiple level based
LC sampling (see Fig.1), adaptive level-crossing based sampling [3],
computation of LC times of an analog signal refers to some of the
work in this regard for using implicit sampling scheme. Also Tsi-
vidis in [4] proposes a mixed domain signal and system processing
based on input decomposition.
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Fig. 1: Level crossing times for signal sam-
pling. For this signal, x(t), sampling instants are
{(t0, l2), (t1, l1), (t2, l0), (t3, l0), (t4, l1), (t5, l1)}.

Implicit sampling in general results in non-uniform time samples.
It is well established [5] that a bandlimited signal is uniquely de-
termined from its non-uniform samples (NUS), provided that the
average sampling rate exceeds the Nyquist rate. However, NUS
based reconstruction based on direct implementation of determin-
istic functions is computationally impossible because of the need for
infinite number of samples. Hence with finite samples we need to
approximate the signal as best as possible. The reconstruction ap-
proaches in the literature include least-squares and other interpola-
tion techiniques and are reviewed in [6]. The approach of implicit
sampling though seems elegant, the reconstruction is not perfect and
with a tradeoff of number of samples available along with the issues
of robustness to noise. For LC based NUS, the noise can be in the
signal itself, or on the LC sampling instants, or in the quantization
of these timing values.

A general result for the recovery of one dimensional signal from
LC instants is still lacking. In this paper, we consider bandpass peri-
odic signals, its sampling based on LC and reconstruction from the
NUSs. In many practical settings the signals possess some smooth-
ness and also are bandpass in nature. For the reconstruction, we
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Fig. 2: (a)A Uniform Sampling based ADC. The sampling period is denoted by Ts (b)A generic Non-Uniform Sample based ADC

assume the signal is sparse in the bandpass frequency content. We
focus on perfect reconstruction of the signal from less than Nyquist
number of samples based on LC based non-uniform samples over a
limited finite duration. This is in contrast to sampling by random
projections as in CS [7]. We consider LC based sampling, a gener-
alization over ZC. The problem of LC based signal reconstruction
has been studied by mainly using interpolation approach. We here
explore and compare nonlinear approximations based on solving a
non-convex problem of reconstruction from the level crossing in-
formation and a sparse reconstruction framework. We deliberately
use LCs to enable perfect reconstruction of the signal with accurate
scale factor of close to 1. The inclusion of levels other than zero,
together with ZCs enables faster and higher probability in perfect re-
construction along with convergence of the algorithms. We examine
a random combination among the available LCs for different levels
and reconstruction from an undetermined system of equations. Un-
der this formulation we show improvement in signal reconstruction
by using multiple levels and find that a random selection amongst
LCs giving higher probability of recovery over use of a single level
with the same number of level crossing instants. The interplay be-
tween reconstruction error and gradual placement of levels farther
from zero level is shown.
The paper is organized as follows. The basis for level crossing based
sampling is provided in Section 2. Section 3 gives the problem for-
mulation for level crossing based implicit sampling and reconstruc-
tion. Section 4 gives the simulation details and the results discussion.
We conclude in section 5.

2. LEVEL CROSSINGS BASED SIGNAL SAMPLING

The sampling of a signal based on LCs captures more information
than ZCs since LCs include amplitude information also, which is
lost in ZCs. The LC based ADCs are asynchronous in nature and
provide and compete with synchronous ADCs with the benefits of
lower power dissipation, electromagnetic interference reduction and
improved Figure of Merit [8, 9]. These can be implemented without
a global clock. The sampling rate if any is locally defined by the sig-
nal which makes them better suited for non-stationary signals [10]
as well as giving more compact representation than Nyquist samples
globally. Fig. 2 illustrates uniform sampling vs LCs based nonuni-
form sampling.

The approaches taken for the reconstruction of the analog signal
from the NUSs include linear interpolation[11] based on polynomial
kernel [10], sum-of-sincs kernel [12] and piecewise linear interpola-
tion based on splines, prolate spheroidal wave functions[13],iterative
methods [14]. In [15] attempt to make use of sparsity based signal
reconstruction from ZCs is made. The algorithm proposed in [15]
because of depending on ZCs is not able to guarantee on the per-
formance. These reconstruction algorithms need more number of
samples so as to solve an overdetermined system of equations and
have convergence dependent on choosing of algorithm parameters.
We formulate the reconstruction from LCs as a nonlinear optimiza-
tion problem based on the prior knowledge of the domain in which

the signal is sparse. The approach taking the advantage of sparsity is
more efficient than a direct pseudo-inverse based solution.

3. PROBLEM FORMULATION

Consider a real periodic signal of finite energy, s(t) ∈ L2[0, T ],
satisfying the Dirichlet conditions. Then s(t) has equivalent repre-
sentation as:

s(t) =
α0

2
+

∞∑
k=1

(
αk cos

(2πkt
T

)
+ βk sin

(2πkt
T

))
. (1)

where α0, αk, βk are the Fourier series coefficients. Instead of s(t),
we focus on bandpass signal, x(t) with a frequency span of [ p

T
, q

T
]

with q > p > 0,and {p, q} ∈ Z. Then x(t) has the representation:

x(t) =

q∑
k=p

(
αk cos

(2πkt
T

)
+ βk sin

(2πkt
T

))
. (2)

We denote the space of T duration periodic signals band limited to
(in rad/sec) 2πp

T
to 2πq

T
by VB . For q = 2p, x(t) is an octave band

signal. With the formulation in (2) we have VB being spanned by
the 2(q−p+1) functions {e−j2πk/T , p ≤ |k| ≤ q}. The dimension
of VB is 2(q− p+1). For a uniform sampling grid we have with Ψ

being the Fourier dictionary,

x = Ψa = [Ψcos Ψsin]

[
α

β

]
2(q−p+1)×1

(3)

In the above equation, a = [αT βT ]T is the cosine and sine
Fourier coefficient vector in order. The goal is to reconstruct x(t) ∈
VB using finite number (M ) of NUS taken through LC information.
For NUS, with the sampling grid being non-uniform we have the
Fourier dictionary defined by the LCs time instants information. For
the formulation here, we consider L to be composed of a single level
l . In the simulation we populate the matrices with information of
LCs for multiple level. The x(t) is sampled at the LC for level l .
The sampled time instants are then represented by T l = {tli : i ∈
[1,M ]}, again with M denoting the number of level crossings over
the sampled time duration. The sampling operation is defined using
the sampling instants information with the sampling kernel ΨT l as,

xl = [l . . . l ]TM×1 = ΨT la = [Ψcos
T l Ψsin

T l ]

[
α

β

]
(4)

For ZCs, l = 0, the problem has been approached by solving for
the nullspace solution and the reconstruction is difficult, it is only
upto a scale factor and the convergence depends on the parameters
in the algorithm [15]. For l �= 0 a straight forward approach is to
solve the set of M linear equations with 2(q − p + 1) unknowns.
With N = 2(q − p + 1) the computation requires inverse and with
N > 2(q− p+1) it needs the pseudo-inverse of ΨT l . This is com-
putationally intensive when M is large. We consider the system of
linear equations to be under-determined based on not all LCs time
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instants information is available. This can be formulated by multi-
plying equation (4) with ΦL×M , a rectangular matrix with L < M
and the ith row having a 1 at the jth location and all other entries of
the row being zeros, which enables picking of the desired LCs. This
will pick L of the LCs information and with L < 2(q − p + 1) we
have,

yL×1 = Φxl = ΦΨT la (5)

The problem of reconstruction is now ill-defined with the lin-
ear system of equations being under-determined. We make use of
sparsity of x(t) in its bandpass frequency content and obtain an ap-
proximate solution.

3.1. Sparse Recovery Using LCs

We assume the signals is sparse in the bandpass frequency content
with ‖a‖0 ≤ K. This seems to be a reasonable assumption for prac-
tical bandpass signals. The assumption of sparsity has been shown
to be useful in solving under-determined system of linear equations
[16].

3.2. Constrained Optimization Solution

The solution to (5) can be framed as an optimization problem and
the system of equations being under-determined different solutions
can be obtained depending on the cost function J(.). We use three
different approaches well known in solving under-determined prob-
lems. The optimization problem for (5) is framed as,

Pa
J : minaJ(a), subject to ΦΨT la = y, (6)

The most common choice for J(.) to solve for LCs based on (4) has
been the squared Euclidean norm, ‖a‖2. Using this for (6) gives the
closed form pseudo-inverse solution,
â = (ΦΨT l)T (ΦΨT l(ΦΨT l)T )−1y = (ΦΨT l )†y.
This is computationally intensive for each LCs set, it does not take
into account the sparsity in a and though closed form is not the best
solution. It does not recover the exact support of a when it is sparse.
The other choices are choosing lp norms which induce sparsity in
the solution, and hence we go with lp − norm as cost function,
‖a‖p with 0 ≤ p ≤ 1. The two well known approaches in this are
basis pursuit and orthogonal matching pursuit (OMP) algorithms.
The optimization for Basis pursuit is,

Pa
1 : mina{λ‖a‖1 + ‖ΦΨT la− y‖2}, (7)

The parameter λ makes the optimization to be tuned between degree
of sparsity and accuracy in the solution.

4. SIMULATIONS

For the simulations, a continuous domain signal and its LC instants
are obtained approximately by using zero padding in the frequency
domain followed by then interpolating linearly in time to find es-
timate of the LC time instants. We vary the number of levels and
their placement. We do not report on adaptation of levels. The LCs
level are chosen to be η(max |x(t)|) with |η| ∈ [0, 1). In (2) we
consider T = 1 and q > (p + 1). The sparsity factor K is varied
from 10%−90% of the bandwidth of x(t). The K nonzero location
in the sine and the cosine Fourier coefficient vector, a, are selected
randomly which also selects the active frequencies in the bandpass
spectrum. These active coefficients values are drawn from a normal
distribution and the remaining are set to zero. After obtaining the LC
instants from the corresponding time domain signal, the LC sampled
values are picked up based on the formulation in (5). The L level
crossing instant are selected and we solve for the N = 2(q− p+1)

unknowns using pseudo-inverse, OMP, and Basis Pursuit. A Monte-
Carlo simulation with 100 trials was done and for each trial a recon-
struction with SNR > 20dB was considered perfect recovery. For
support recovery error (Se) [16] we make use of the following with
â denoting the recovered coefficient vector,

Se =
max{|a|, |â|} − |a ∩ â|

max{|a|, |â|}

In the simulations we do not assume any apriori information about
K except that a is sparse hence K < N .

4.1. Reconstruction from LCs Based on Sparsity

With bandwidth N/2 = 40, denoting the cardinality of a, and K =
20, the under-determined system of equation is solved using two
arbitrary different levels. The reconstruction is done using Basis
Pursuit [17]. For the simulations, λ = .000165 was found to give
good reconstruction SNR for (7). The plot in Fig. 3 shows perfect
reconstruction with SNR = 35 dB. Similar results are obtained
with OMP. However, pseudo-inverse solution fails to reconstruct the
signal because of inability to recover the sparse support.
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Fig. 3: Reconstruction based on Basis Pursuit with sparsity factor of
25%. (The plot is better visualized in color.) The levels along with
the sampling instants are shown in the first plot. The second plot is
the scatter plot showing perfect support recovery.

4.2. Pseudo-inverse (non-iterative) vs OMP

With a fixed sparsity of K
N

= 0.2, the lower cut off frequency was in-
creased from p = 20 to p = 60 with the higher cut off being q = 2p.
The LC set was composed of 3 levels randomly placed. A random
selection of LC instants is taken. The reconstruction was carried
out by solving for an undetermined system of linear equations with
2(q − p + 1) unknowns. As seen in Fig.4 OMP takes advantage
of sparsity and performs better than direct pseudo-inverse. The ad-
vantage is clear in both probability of exact recovery and support
recovery of the nonzero values in a. The plot also shows the de-
crease in probability of recovery as p (hence bandwidth) increases.
This means increase in higher frequency content in the signal and
its reconstruction is effected by lower resolution in the capturing of
the LCs time instants. In a practical realization, the LC time instants
will be perturbed. This is analogous to jitter but does not accumulate
over time. The sample is taken at an uncertain time instant around
the nominal time instant. This can be modeled as an additive noise
with the signal. However, the noise depends not only on the distribu-
tion of the perturbation, but also on the slope of the measured signal
at the LC.

4.3. Level Dependency

We compare the performance with respect to choice of levels for LC
as a function of the dynamic range of the signal. The experiment is
carried out with a single level, l = ηmax |x(t)|, with η ∈ (0, 1).
The bandwidth of the signal and the bandpass frequency span is fixed
with sparsity made to sweep from K

N
= 0.1 to 0.9. The plots in Fig.5

3455



20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

ba
bi

lit
y 

of
 R

ec
ov

er
y−
−

>

Bandwidth with frequency normalized−−>
20 30 40 50 60

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

S
up

po
rt

 R
ec

ov
er

y 
er

ro
r 
−
−

>
Bandwidth with frequency normalized −−>

Fig. 4: Effect of bandpass frequency content on reconstruction. ∗
denotes plot for OMP and ◦ denotes plot for pseudo-inverse.

show that with a single level the closer l is to 0, higher is the prob-
ability of recovery and support recovery. This is an intuitive result
as the number of LCs captured is more and we are more likely to
capture at least two samples per cycle of the frequencies present in
the spectrum. This was carried out with the system of linear equa-
tions being not undetermined and hence the performance of both
pseudo-inverse and OMP are similar. However, the support recovery
is relatively better in OMP than with pseudo-inverse.
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Fig. 5: Reconstruction performance dependency on single level (l)
placement, with l = ηmax |x(t)|, with η ∈ (0, 1).

4.4. Random LCs from the preset Levels

Given to choose L LCs time instant information withL < 2(q−p+
1) we simulate to see which combination of LCs performs better.
The simulation result show that a random selection of LCs amongst
the available levels tends to perform better than choosing the time in-
stant information from a single level’s LCs. This is interesting as it
means in picking up same length information a random picking car-
ries more information and hence all LC time instants are not equally
important.

4.5. Sparsity and Reconstruction from random LCs

Here we compare the effect of increasing sparsity and sampling the
LC instants randomly by choosing from the obtained LCs for l = 3
levels. We do not take all the LC instants corresponding to a single
level instead we take a random combinations of LCs instants ob-
tained to make up the new LCs instants set. The plots in Fig.6 show
the comparison of Basis Pursuit based recovery and reconstruction
with pseudo-inverse. As seen in the plots the performance based on
Basis Pursuit is relatively higher because of advantage of sparsity in
reconstructing with an restricted number of LCs instants. The ad-
vantage decreases with increasing signal sparsity (K/N).
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5. CONCLUSION

It is interesting that sparse reconstruction using either basis pursuit
or OMP is quite effective in recovering the signal based on its level
crossings information only. Surprisingly a random set of LCs per-
formed better than any single level LCs when the system of equa-
tions is underdetermined. With the notion of signal sampling itself
based on its local values, there is much promise to explore signal
dependent non-uniform samples for many different applications.
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