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ABSTRACT

Signal recovery from the amplitudes of the Fourier transform,

or equivalently from the autocorrelation function is a classi-

cal problem. Due to the absence of phase information, sig-

nal recovery requires some form of additional prior informa-

tion. In this paper, the prior information we assume is spar-

sity. We develop a convex optimization based framework to

retrieve the signal support from the support of the autocorre-

lation, and propose an iterative algorithm which terminates in

a signal with the least sparsity satisfying the autocorrelation

constraints. Numerical results suggest that unique recovery

up to a global sign change, time shift and/or time reversal is

possible with a very high probability for sufficiently sparse

signals.

Index Terms— Phase retrieval, sparse signals, rank min-

imization, convex optimization

1. INTRODUCTION

The problem of loss of phase information arises in many areas

of engineering and applied physics, including x-ray crystal-

lography, astronomical imaging, electron microscopy, chan-

nel estimation and particle scattering during the measuring

process. Retrieving phase information from the measured

magnitude data is known as phase retrieval. Over the last few

decades, this problem has generated a lot of interest and a

wide range of algorithms have been proposed (e.g., [1, 2]). A

comprehensive survey can be found in [3, 4].

Phase retrieval is equivalent to recovering the signal from

its autocorrelation. For the case of a one dimensional sig-

nal, the mapping from the signal to the autocorrelation is not

one-one, and hence unique recovery is not possible in general.

For a given Fourier transform magnitude data, every possible

phase corresponds to a different signal. To overcome this, the

signal is generally forced to satisfy certain constraints to limit

the number of possible signals. A convex optimization based

approach has been proposed recently in [5], where multiple

measurements are used in an attempt to resolve the phase am-

biguity.
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Considerable research has been done towards extracting

information about the support of the signal from the support

of the autocorrelation [6, 7]. The support information can be

instrumental in recovering the signal from its autocorrelation

by reducing the complexity or providing useful constraints.

In this work, we assume that the signal is real and sparse,

i.e., the number of locations where the signal is non-zero is

much less compared to the length of the signal. In many ap-

plications mentioned above, sparsity is a reasonable assump-

tion. For example, in astronomical imaging, the number of

locations where the signal is non-zero is much less compared

to the size. Sparsity greatly restricts the number of valid phase

combinations, and research has been done to exploit this fea-

ture recently. An iterative algorithm has been proposed in [8]

which guarantees sparse spectral factorization under certain

sufficient conditions. We see in [8] that for uniform sparsity

patterns, one can always find multiple signals satisfying the

autocorrelation constraints, no matter how sparse they are.

In this paper, we propose an iterative algorithm which

recovers a sparse signal up to a sign change, time reversal

and time shift from the autocorrelation of the signal. Since

sign change, time reversal and time shifts preserve sparsity

and do not change the autocorrelation, we cannot differenti-

ate between them. We formulate the phase retrieval problem

as a constrained rank minimization problem (which in gen-

eral is NP-hard). Various heuristics have been proposed in

recent years (e.g., [9, 10]) to solve rank minimization prob-

lems. Here, we propose a novel algorithm for rank minimiza-

tion under the constraints required of phase retrieval problem.

The algorithm we propose for sparse signal recovery is

shown to converge to the sparsest solution satisfying the auto-

correlation constraints. Simulations suggest that the recovery

is unique up to a certain sparsity with a very high probability

if the support is chosen randomly. Also, simple modifications

can be made to account for measurement noise.

The paper is organized as follows. Section 2 of the paper

describes the problem formulation. An iterative algorithm is

proposed in Section 3 to solve the phase retrieval problem for

sparse signals. In Section 4, we present the results of numeri-

cal simulations.
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2. PROBLEM FORMULATION

Let x = (x0, x1, ...xn−1)
T be a real-valued signal of length

n. We will construct a new signal x̂ of length m = 2n from

x by appending n zeros in the end so that circular indexing

can be used for autocorrelation. Let a = (a0, a1, ...am−1)
T

be the autocorrelation of x̂, defined as

ak =

m−1∑
i=0

x̂ix̂i+k 0 ≤ k ≤ m− 1 (1)

Let y = (y0, y1, ...ym−1)
T be the Fourier transform of x̂, i.e.,

y = Fx̂ (2)

where F is the m ×m DFT matrix. We have access to Y =
(|y0|2, |y1|2, ....|ym−1|2)T , from which a can be obtained by

taking the inverse Fourier transform.

Phase retrieval problem can be formulated as finding an x̂
which satisfies (1). This is clearly not a convex optimization

problem as the autocorrelation constraints are non-convex.

We can relax the constraints into a set of convex constraints

by embedding the problem in a higher dimensional space by

trying to find X = x̂x̂T . In particular, the problem is equiva-

lent to

find X = x̂x̂T

subject to |yk|2 = trace(MkX) k = 0, ......,m− 1

where Mk is the m × m matrix defined by [Mk]u,v =

exp(− i2πk(u−v)
m ), ∀ u, v ∈ {0, 1, ....m− 1}.

We need to find a rank one solution X in the given convex

set. This problem can be formulated as

minimize rank(X) (3)

subject to Yk = trace(MkX), k = 0, ......m− 1 (4)

X � 0

3. RECONSTRUCTION ALGORITHM

3.1. Rank Minimization

Rank Minimization Problem (RMP) is very well studied by a

lot of researchers ([9, 10, 12, 13]). In general, the RMP can

be expressed as

minimize rank(X) subject to X ∈ C

where X is the optimization variable and C is a convex set.

This is a non-convex problem as rank is a non-convex func-

tion. It has been shown in [9] that trace minimization is

the best convex relaxation of rank minimization for positive

semidefinite matrices. This relaxation is not very useful in

the phase retrieval setup (3) though, as trace(X) corresponds

to the energy of the signal x, which is of a fixed value a0. A

heuristic (5) proposed in [10] can be used instead to solve for

low rank solutions.

minimize log det (X+ εI) subject to X ∈ C (5)

This heuristic tries to minimize a concave function in a

convex domain, which can be done using gradient descent

approach. Since the gradient involves X−1, a matrix inver-

sion has to be done at every step of the iteration and hence

this method is computationally expensive. In this work, we

introduce a new and specialized heuristic (6) for the phase re-

trieval setup. Observe that in (3), C is a subset of the set of

positive semidefinite matrices with constant trace a0.

maximize ||X||2F subject to X ∈ C (6)

It should be emphasized that, similar to (5), program (6) is

non-convex as we maximize a convex function (‖ · ‖F norm)

in a convex domain. Gradient ascent approach, similar to the

one used in [10] can be used. The first order Taylor expansion

of ||X||2F about Xk is

||X||2F = ||Xk||2F + 2 trace(XT
k (X−Xk)) (7)

For gradient ascent, we replace the convex function with

a linear function having the same gradient as the convex func-

tion at the solution of the previous iteration. The problem is

now reduced to

maximize trace(XT
kX) subject to X ∈ C (8)

where X0 is chosen randomly with all terms in it being non-

negative and Xk for k > 0 can be chosen using

Xk = argmax
X∈C

trace(XT
k−1X) (9)

This is much faster than the log-determinant heuristic

used in [10], which requires a matrix inversion to obtain the

gradient. The algorithm will surely converge to a maximum

(local or global) as the function is convex, because of which

in each iteration its value will increase by an amount at least

as much as the linearized objective function.

Lemma 3.1.1. Suppose C is a convex set of positive semidefi-
nite matrices with a fixed trace. If there exists a rank 1 matrix
X� ∈ C, then any matrix X ∈ C is a global optimum of (6) if
and only if it is rank 1.

Proof. For a positive semidefinite matrix with eigenvalues

{λi}, we have λi ≥ 0, ∀ 1 ≤ i ≤ m and

trace(X) =
m∑
i=1

λi = c and ||X||2F =

m∑
i=1

λ2
i
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Then, ‖X‖2F =
∑

i λ
2
i ≤ (

∑
i λi)

2 = c2 and equality is

achieved iff all cross terms λiλj , i �= j, are 0 i.e. exactly one

eigenvalue is nonzero or equivalently the rank of the matrix is

1 (assuming X �= 0). Finally, by assumption, there is a rank

1 solution. Hence c2 can be achieved in (6). As a result, all

solutions achieving the same objective have to be rank 1.

Once the iterative algorithm for (6) converges, we can

check the rank of the solution, which will tell us if we have

converged to a local or a global maximum. The process can be

iterated from different starting points X0 till we find a global

maximum, which by Lemma 3.1.1 will be a rank 1 matrix.

The signal x can be extracted from it using a simple decom-

position.

3.2. Support Estimation

In this work, we aim to find the sparsest solution satisfying

the autocorrelation constraints, which is an NP-hard problem.

Although, �1 minimization is a popular and powerful method

for sparse recovery [11], due to the special structure of mea-

surements {Mk}m−1
i=0 (which are induced by the DFT matrix),

it is not hard to construct examples for which �1 minimization

fails.

For instance, let {x̂i}i=2m−1
i=1 be the set of signals con-

structed from x̂ by using circular time-shifting and time-

reversing operators. Since these operations do not change

the autocorrelation, any matrix Xi = x̂ix̂
T
i will satisfy the

constraints (4). Note that the constraints (4) are linear and

hence any convex combination of such matrices will satisfy

the constraints. As a result, although it won’t be discussed

here, one can construct trivial examples where there exists a

convex combination with rank more than 1 and an �1 norm

lesser than that of X.

To enforce sparsity, we shall attempt to find the support

of the signal. We will assume that the support of the signal

is a subset of the support of the autocorrelation. This is same

as assuming there is no cancellation of support in the auto-

correlation, which is a very weak requirement and holds with

probability one if the coefficients of the signal are chosen ran-

domly from a non-degenerate distribution. We can formulate

the support estimation problem as an RMP. Suppose S and A
are m×m matrices defined as

Sij =

{
1 if x̂i & x̂j �= 0

0 otherwise
and Aij =

{
1 if ai & aj �= 0

0 otherwise

for 0 ≤ i, j ≤ m− 1. If u is the indicator function of x̂, i.e.,

ui = 1 if x̂i �= 0 and ui = 0 otherwise, then S = uuT . If

s is the sparsity of the signal, the support estimation problem

becomes

minimize rank(S)

subject to trace(S) = s∑
i

∑
j

Sij = s2

∑
i

Si,i+k > 0 iff ak �= 0

0 ≤ Sij ≤ 1 0 ≤ i, j ≤ m− 1

S ∈ A,S � 0 (10)

Trace, sum, and lower-upper bound constraints on S fix

sparsity as seen in Lemma 3.2. S is a subset of A and is

positive semi definite by construction. We also note that∑
i Si,i+k is zero if ak is zero as we assume that there is

no cancellation, and when ak is non-zero, there has to be at

least one non-zero entry in
∑

i Si,i+k so that the signal can

contribute to ak.

Lemma 3.2.1. Any rank 1 solution S� of the optimization
problem corresponds to a valid support of a signal with spar-
sity s.

Proof. Let S� = uuT . The constraints ensure that∑
i

u2
i = s and

∑
i

∑
j

uiuj = s2 ⇔
∑
i

ui = s

Since 0 ≤ ui ≤ 1, we have u2
i ≤ ui. If 0 < ui < 1 for

some i, then u2
i < ui giving us

∑
i u

2
i <

∑
i ui which is a

contradiction. Hence for the two equations to hold, exactly s
of the entries in u will be 1 and the remaining 0, which will

hence give us a valid support of a signal whose autocorrela-

tion will have the same support.

Note that we assume knowledge of the sparsity of the sig-

nal. This condition can be easily relaxed by starting with s as

0 and increasing by 1 till one obtains a feasible solution.

Remark 3.2.1. Numerical simulations suggest that there are
cases where two distinct and sparse supports have the same
autocorrelation support. However, based on simulations with
randomly generated supports, we can say that for sufficiently
sparse signals, the probability of such an event is very low.

3.3. Sparse Phase Retrieval Algorithm

The support estimation algorithm converges to any possible

support whose autocorrelation is given by the autocorrelation

of the signal of interest. It is possible that there might not ex-

ist a signal on the estimated support which gives the measured

autocorrelation, if the estimated support is not the same as the

support of the signal that generated the autocorrelation. To

overcome this, we combine the rank minimization problem of

support and signal estimation. It can be seen that any solution
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Algorithm 1 Phase Retrieval Algorithm

Input: The autocorrelation a of the zero-padded signal.

Output: The sparse signal x̂ which has the autocorrelation a
repeat

• Initialize k ← 0
repeat

• Start with random matrices Wk and Vk by picking

their entries uniformly between [0,1]

• Solve the optimization problem

maximize trace(W′
kX+V′

kS)

subject to Yk = trace(MkX) 0 ≤ k ≤ m− 1

trace(S) = s∑
i

∑
j

Sij = s2

∑
i

Si,i+k > 0 iff ak > 0

0 ≤ Sij ≤ 1 0 ≤ i, j ≤ m− 1

X ∈ S,S ∈ A

X,S � 0

• k ← k + 1

• Wk = X�, Vk = S�, where X� and S� is the solution

to the optimization problem

until ||Wk+1−Wk||2F < ε and ||Vk+1−Vk||2F < ε

until rank(X�) = 1 and rank(S�) =
1 or a maximum number of iterations

to the combined optimization problem is a global maximum if

and only if it is rank 1 for both the problems, hence giving us

the sparsest solution which satisfies the autocorrelation con-

straints. Algorithm 1 summarizes the steps of the algorithm.

Noisy case: In practice, it is not possible to measure auto-

correlation without noise. The algorithm can be made ro-

bust to noise by replacing Yk = trace(MkX) with ||Yk −
trace(MkX)||2 < δ for all 0 ≤ k ≤ m − 1, where δ is a

function of the noise variance.

4. SIMULATION RESULTS

Simulations were performed for various sparsities and for sig-

nal length n = 16. For each sparsity, the support was chosen

uniformly at random. The signal values in the support were

drawn from an i.i.d Gaussian distribution. Figure 1 shows the

success percentage of signal recovery as a function of spar-

sity, hence illustrates the performance of Algorithm 1. We

see that when the support is randomly chosen, the recovery is

unique with high probability for sufficiently sparse signals.
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Fig. 1. Percentage of successes nsuc vs the signal sparsity s
for n = 16.
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