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ABSTRACT 

The feasibility of compressed sensing (CS) based waveform-
reconstruction for data sampled from random equivalent sampling 
(RES) method is investigated. A novel measurement matrix 
motivated by the Whittaker-Shannon interpolation formula is 
proposed for this purpose. Experiments indicate that, for 
spectrally-sparse signal, the CS reconstructed waveform exhibits 
significantly higher signal-to-noise ratio (SNR) than that using the 
traditional time alignment method. A prototype realization of this 
proposed CS-RES method has been developed using off-the-shelf 
components. It is able to capture analog waveform at an equivalent 
sampling rate of 25 GHz while sampled at 100 MHz physically. 
 
Index Terms— Random equivalent sampling, non-uniform 
sampling, sparsity, compressed sensing, signal reconstruction

1. INTRODUCTION 

 Random equivalent sampling (RES) [1]-[4] is a random 
sampling method that enables digital sampling of a periodic analog 
signal using an analog-to-digital converter (ADC) clocked at a 
frequency much lower than the Nyquist rate.  
 Compared to uniformly-spaced sampling technique, RES often 
takes considerably longer sampling time to produce a sufficiently 
accurate reconstructed waveform. The main cause for such a delay 
is the uneven random distribution of the relative positions of RES 
samples within a cycle of the sampling clock. To achieve desired 
accuracy, one often has to wait patiently until sufficient number of 
samples to populate the waveform buffer. This long sampling 
latency may limit potential applications of RES for real time 
acquisition of high frequency signals. In this work, we propose to 
use compressed sensing (CS) to reconstruct a spectrally sparse 
periodic analog waveform to reduce this unwanted delay.  
 CS [5]-[7] has been proposed as an efficient signal 
reconstruction method for random samples of spectrally sparse 
analog signals [8], [9]. Previously, the feasibility of applying CS to 
sample spectrally sparse periodic signals has been demonstrated 
[8], [9]. However, both these earlier methods require pre-
processing of the analog signal using additional special purpose 
random sampling circuitry. In particular, a pseudo-random 
sequence clocked at the Nyquist rate is needed to modulate the 
analog signal. Implementation of such a pseudo-random sequence 
generator would be non-trivial and costly.   
 A key contribution of this work is the successful demonstration 
of the feasibility and potential advantage of incorporating CS with 
RES sampling. A novel measurement matrix motivated by the 

Whittaker-Shannon interpolation formula is proposed to facilitate 
CS reconstruction. The CS reconstruction algorithm has been 
incorporated into a prototype of a RES sampling enabled digital 
oscilloscope [10] developed recently by the first author. This 
oscilloscope is capable of capturing analog waveform at an 
equivalent sampling rate of 25 GHz while sampled at 100 MHz 
physically. It is observed that the CS reconstructed waveform 
exhibits higher signal-to-noise ratio (SNR) while requiring fewer 
RES samples (and hence shorter delays). An extended version of 
this paper will be published in near future [11].  

2. RANDOM EQUIVALENT SAMPLING 

 The basic principle of RES sampling is illustrated in Fig. 1. 
Given a periodic analog signal as shown in the solid line on the top 
row, a level-trigger circuitry compares this analog waveform 
against a reference voltage shown as the horizontal dashed line. A 
trigger pulse will be generated whenever the voltage of the analog 
signal rises crossing the reference voltage. It is assumed that 
exactly one trigger pulse will be generated per cycle of the analog 
signal. If so, the trigger signal would be activated at a rate equal to 
the fundamental frequency f0 of the analog signal. The trigger 

Figure 1. Illustration of random equivalent sampling 

Figure 2. A block diagram of a RES device
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pulse provides a fixed reference point to align samples. A block 
diagram of a RES device is shown in Fig. 2. 
 The ADC is clocked at a sampling frequency fs << f0 (sub-
Nyquist rate sampling). Let Q be a positive integer, the relation 
between f0 and fs may be explicitly expressed as: 
  Ts = Q T0 +  (1) 
where Ts = 1/fs is the sampling interval, T0 = 1/f0 is the period of 
the periodic analog signal, and 0   = Ts mod T0 < T0. Let us 
define t (0  t  Ts) to be the time difference between the trigger 
pulse and the immediate sampling clock edge. Therefore, t gives 
the relative position of the sample within one cycle of the sampling 
clock.  
 The success of RES hinges upon the evenly distribution of t 
of different samples over the sampling interval [0, Ts]. This may be 
accomplished by injecting a random phase dithering  uniformly 
over [0, Ts] [11]. The random phase dithering can be achieved by 
passing the sampling clock through a variable delay circuitry 
before feeding into the ADC. The variable delay circuitry may be 
realized with a field programmable gate array (FPGA) where a 
number of selectable delay paths are implemented. In practical 
application, the interval Ts is partitioned into equally spaced bins 
of duration Te. The value fe = 1/Te then becomes the equivalent
sampling frequency of RES. If Te < T0/2 (i.e. fe > 2f0), then the 
analog waveform may be sampled without aliasing. In other words, 
the RES should not be applied to sample analog signals whose 
bandwidth exceeds half of the equivalent sampling frequency.  
 Due to this uneven distribution of sampling interval, RES 
would require a rather large number of samples to fill the empty 
bins and thereby achieve the desired accuracy. This is illustrated in 
Fig.  3. With Ts = 10 ns and Te = 40 ps, there are N = 250 bins in 
the waveform buffer to be filled. After 1500 samples are acquired 
by the RES circuitry, there are still about 40 bins left empty. On 
average, one useful sample is obtained for every 7 random samples. 
Clearly, the inefficiency of the RES sampling method is 
demonstrated. Below, we propose to use a CS reconstruction 
method to improve the efficiency and accuracy of the RES 
sampling when the underlying analog signal has a spectrally sparse 
frequency spectrum.   

3. COMPRESSED SENSING SIGNAL RECONSTRUCTION 

 Compressed sensing (CS) is an emerging data sampling 
paradigm that has received much attention [5]- [9], [12]. For a 
class of signals that exhibit a “spectral sparseness” property, CS 
method promises perfect reconstruction of the signal using very 
few measurements. With instrumentation applications, an analog 
signal is sparse if it is periodic and contains few significant 
harmonic components. Since RES also requires the underlying 
analog signal to be periodic, it is natural to consider the feasibility 
of applying CS to improve the quality of reconstructed signals.  
 In CS, the signal to be reconstructed is denoted by an N 
dimensional vector x. In the current application, x would be the 
unknown analog signal sampled at the equivalent sampling rate fe. 
Using RES or other methods, a set of measurements of the 
elements of x is obtained and denoted by a vector y. In RES, each 
element of y is the output of a low-rate ADC. It can be represented 
as a weighted linear combination of elements in x that contains 
evenly spaced samples of the unknown waveform, with the 
sampling rate fe > fNyquist (fNyquist is the Nyquist rate of the signal to 
be measured). Let these weights be arranged in a measurement 
matrix , one may express the relation between x and y as follows:  
  y = x. (2) 

Since the signal is periodic, it has a discrete Fourier spectrum 
(line spectrum). Such a signal is spectrally sparse if only very few 
Fourier coefficients have significant magnitudes while other are 
nearly zero. In other words, the energy of the signal is 
concentrated on few spectral coefficients. In particular, a K-sparse 
signal x has K significant spectral coefficients where K is the 
sparsity level. If x is sampled from a K-sparse periodic analog 
signal x(t), it can be approximated by a linear combination of K (K 
<< N) discrete Fourier basis functions, i.e., 
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where 
in  , ni  {1, 2, , N}, and  is the inverse discrete 

Fourier transform (IDFT) matrix [13]. Let  = [ 1, 2, , N]T be 
the coefficients vector of x in , and  is a sparse vector 
consisting of K non-zero Fourier coefficients. Equation (2) can be 
rewritten as: 
  y = x = D  (4) 
where D (= ) is the equivalent measurement matrix. Given the 
observations y, the measurement matrix , and the transform 
matrix , the purpose of CS reconstruction is to find  such that  
               || ||0 is minimized subject to || y  D ||2  . (5) 
Here the l0 norm counts the number of non-zero elements in a 
vector , and is a pre-defined acceptable recovery error. 
Minimizing || ||0 is equivalent to minimize the number of non-zero 
elements of the solution # and therefore force the solution to be a 
sparse vector. Enforcing the constraint ||y  D ||2   would ensure 
the reconstructed signal x# = # will yield (almost) the same 
measurements y if subjected to the same RES sampling process.  

3.1 Measurement Matrix 
 A key contribution of this work is the development of a special 
kind of measurement matrix. Unlike general CS approaches where 
random measurement matrices are used, this special measurement 
matrix for RES sampled signals is motivated by the low-rate ADC 
sampling mechanism. More specifically, the measurement matrix 
is formed by the well-known Whittaker-Shannon interpolation 

Figure 3. The numbers of the unfilled bins vs the numbers of 
samples acquired using RES.
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formula. According to the Shannon sampling theorem [14], the 
observation y and the original signal x satisfy the following 
formula 
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where 1  m  M, 1  n  N, M is the number of random 
measurements (M < N), tm is time interval for the mth sample as 
described in Fig. 1, and Te is the equivalent sampling period. In 
general, it requires no more than c K log(N) [9] random 
measurements (c is a constant, say 5 in practice) to recover the 
signal with high probability. From (6), the relation between the 
non-uniformly (randomly) sampled signal y of size M (i.e. 
composite acquisitions in Fig. 1) and the uniform equivalent 
sampling signal x of size N can be represented by the following 
matrix-vector representation: 
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   y =  x. (7) 
In (7),  is the measurement matrix with (m, n)th element as 
follows: 

  
, sinc sincm
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 Due to the dependence on individually estimated tm, each m,n 
must be computed after the sample is acquired. However, since 0  
Bm = tm/Te  Ts/Te = N, the values of sinc(Bm n) may be stored in 
a table and be accessed using a simple look-up table operations. 
This will significantly reduce the computational complexity. 

3.2 OMP Recovery Algorithm 
 As described in the introduction of Section 3, the dimension of 
y is often much lower than that of x (M < N). As such, recovering 
x from y is an ill-posed problem, and there may be many possible 
solutions of (5). Among them, the CS theory favors the mostly 
sparse solution that contains minimum number of non-zero 
elements in #. However, the l0 norm regularization problem is 
NP-hard, and is computationally challenging when N increases. A 
variety of signal recovery algorithms have been proposed to 
alleviate this difficulty. To solve the optimization problem of (4), 

one may either apply convex programming [15] or use a family of 
greedy pursuit algorithm [16]. For RES signal reconstruction, the 
large computation cost of convex programming makes it a less 
appealing approach. In this work, we adopt the orthogonal 
matching pursuit (OMP) algorithm [17], a variant of the greedy 
pursuit algorithm for solving the sparse vector . 

4. EXPERIMENT 

 Experiments are performed to compare the performance of the 
proposed CS-RES method against conventional interpolation based 
RES method. Two kinds of synthetic analog waveforms are 
generated and applied to a prototype RES sampling board to yield 
a list of time-indexed samples. The first kind of analog waveform 
is a spectrally sparse signal, and the second kind is a spectrally 
dense signal.   
 These synthesized analog waveforms are fed into a RES 
prototype board [13]. A picture of this prototype is shown in Fig. 4. 
The block diagram of the major component of this prototype is 
shown in Fig. 2. In this system, fs = 100 MHz and fe = 25 GHz. 
Thus the number of temporal bins N = fe/fs = 250. The phase of the 
sampling clock is dithered by passing the clock signal through a 
variable delay circuitry consisting of 20 different delay paths. For 
each new sample acquisition run, one of these 20 paths is 
randomly selected. Thus,  may assume one of 20 different values. 
After a fixed number of acquisition runs, a sequence of acquired 
RES samples and corresponding positions within the sampling 
period are obtained. Then, these RES samples will be used to 
reconstruct the original analog waveform using both the 
conventional interpolation method as well as the CS reconstruction 
method.  
 With the conventional interpolation method, a linear 
interpolation is applied to the RES sample to fill in sample values 
of empty bins. Then a low pass digital filter is applied to smooth 
the resulting waveform. With the CS reconstruction method, the 
positions of the RES samples are first utilized to compute the 
measurement matrix using look-up table method. Then the OMP 
reconstruction is applied to obtain the reconstructed signal x.  

SNR defined below is used as a metric to compare the quality 
of the reconstructed analog waveform: 

  10 #

|| ||20 log
|| ||

SNR
x

x x
. (9) 

Where || || is the Euclidean norm, x is the signal as measured by a 
sampling oscilloscope, and x# is the reconstructed signal vector.   

The first test signal is a spectrally sparse amplitude-modulated 
(AM) analog waveform 
  ( ) cos(2 ) ( ( ) )cf t A f t m t C  (10) 
where m(t) is the modulation message signal, fc = 0.8 GHz is the 
carrier frequency, A and C are the constants. The AM signal has 
2K + 2 nonzero frequency components (K = 1 in this example). 
For the traditional time-alignment based reconstruction method, M 
= 118 RES samples are acquired. For the CS-based reconstruction 
method, M = 64 RES samples are used. The reconstructed signal 
using the traditional time alignment method achieve a SNR = 
14.56 dB, while the CS reconstruction yield a SNR = 31.51 dB. 
The original waveform, the time-alignment based reconstructed 
waveform, and the CS reconstructed waveform are depicted in Fig. 
5.  Hence, the CS-RES achieves much higher SNR using fewer 
than half of the RES samples. 

Figure 4. A RES prototype circuit board
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 Next, the accuracy of reconstructed analog waveforms at 
different lengths of the RES sample sequence are compared. For 
the range of 20 to 240 RES samples in increment of 20 samples, 
100 random trials are performed for each specific length. The 
mean of the SNRs of 100 trials at each length of the random 
samples is plotted in Fig. 6. It is clear that after the length of 
random samples increases beyond 40, the CS method yields much 
higher SNR with very small variance. Thus, for spectrally sparse 
signal (with very few harmonics), the advantage of the CS method 
is clearly demonstrated.  

5. CONCLUSION 

 A CS based signal reconstruction method is proposed for 
reconstructing periodic waveforms sampled using the RES method. 
Compared to the traditional time-alignment RES reconstruction 
method, the CS approach yields better performance when the 
underlying waveform is spectrally sparse in the sense it contains 
few significant Fourier coefficients. To this aim, a novel 
measurement matrix structure motivated by the Shannon’s 
sampling theory is proposed. A popular OMP CS reconstruction 
algorithm is applied to expedite computation. A hardware RES 
sampling prototype system is used to capture RES samples from 
synthesized analog waveforms. Using these RES samples as inputs, 
the CS reconstructed waveforms yield higher fidelity to the 
original analog waveform for spectrally sparse analog signals.   
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 Figure 5. Restored waveform comparison. Figure 6. Averaged SNR comparison. 
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