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ABSTRACT

In this paper, we investigate the problem of compressed learn-

ing, i.e. learning directly in the compressed domain. In par-

ticular, we provide tight bounds demonstrating that the lin-

ear kernel SVMs classifier in the measurement domain, with

high probability, has true accuracy close to the accuracy of

the best linear threshold classifier in the data domain. Fur-

thermore, we indicate that for a family of well-known deter-

ministic compressed sensing matrices, compressed learning

is provided on the fly. Finally, we support our claims with

experimental results in the texture analysis application.

Index Terms— Compressed Learning, Support Vector

Machines, Delsarte-Goethals Frames, Texture Analysis.

1. INTRODUCTION

In many applications, the data has a sparse representation in

some basis in a much higher dimensional space. Examples

are the sparse representation of images in the wavelet domain,

the bag of words model of text, and the routing tables in data

monitoring systems.

Compressed sensing combines measurement to reduce the

dimensionality of the underlying data with reconstruction to

recover sparse data from the projection in the measurement

domain. However there are many sensing applications where

the objective is not full reconstruction but is instead classi-

fication with respect to some signature. Examples include

radar, detection of trace chemicals, face detection and video

streaming [1] where we might be interested in anomalies cor-

responding to changes in wavelet coefficients in the data do-

main. In all these cases our objective is pattern recognition in

the measurement domain.

Classification in the measurement domain offers a way

to resolve this challenge and we show that it is possible to

design measurements for which there are performance guar-

antees. Similar to compressed sensing, linear measurements

are used to remove the costs of pointwise sampling and com-

pression. However, the ultimate goal of compressed learn-

ing is not reconstruction of the sparse data from their linear
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measurements. In contrast, here we are provided with com-

pressively sampled training data, and the goal is to design a

classifier directly in the measurement domain with almost the

same accuracy as the best classifier in the data domain.

Being able to learn in the compressed domain is beneficial

both from the compressed sensing and the machine learning

points of view. From the compressed sensing view-point, it

eliminates the significant cost of recovering irrelevant data;

in other words, classification in the measurement domain is

like a sieve and makes it possible to only recover the desired

signals, or even remove the recovery phase totally, if we are

only interested in the results of classification. This is like

finding a needle in a compressively sampled haystack without

recovering all the hay. In addition, compressed learning has

the potential of working successfully in situations where one

can not observe the data domain or where measurements are

difficult or expensive.

Dimensionality reduction is a fundamental step in appli-

cations as diverse as the nearest-neighbor approximation [2],

data-streaming [3], machine learning [1], graph approxima-

tion [4], etc. In compressed learning, the sensing procedure

can be also considered as a linear dimensionality reduction

step. In this paper we will show that most compressed sens-

ing matrices also provide the desired properties of good linear

dimensionality reduction matrices.

In terms of geometry, the difference between compressed

sensing and compressed learning is that the former is con-

cerned with separating pairs of points in the measurement do-

main to enable unambiguous recovery of sparse data while

the latter is concerned with consistent separation of clouds

of points in the data and measurement domains. In this pa-

per we demonstrate feasibility of pattern recognition in the

measurement domain. We provide PAC-style bounds guaran-

teeing that if the data is measured directly in the compressed

domain, a soft margin SVM classifier that is trained based on

the compressed data performs almost as well as the best pos-

sible SVM classifier in the data domain. The result are robust

against the noise in the measurement.

The compressed learning framework is applicable to any

sparse high-dimensional dataset. For instance, in texture

analysis [5] the goal is to predict the direction of an image by

looking only at its wavelet coefficients. A weighted voting

among horizontal and vertical wavelet coefficients of each

image can accurately predict whether the image is vertical,

horizontal, or neither. However, in compressive imaging,

3441978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



the high-dimensional wavelet representation of the image is

not provided. In contrast, a non-adaptive low-rank sensing

matrix is used to project the wavelet vector into some low-

dimensional space. Here we show that a weighted voting

among the entries of these measurement vectors has approx-

imately the same accuracy as the original weighted voting

among the wavelet entries in the texture analysis task.

2. BACKGROUND AND NOTATION

Let n be a positive integer, and let k be a positive integer less

than n. We sometimes denote {1, · · · , n} by [n].

We assume that all data are represented as vectors in R
n.

The feature space X (which we also call the data-domain),

is a subset of the whole n-dimensional space, and every data

point is a vector in the feature space.

Let A be an m × n matrix. We use the notation Aj for

the jth column of the sensing matrix A; its entries will be

denoted by aij , with the row label i varying from 0 to m −
1. The matrix A is a tight-frame with redundancy n

m if and

only if AA† = n
m Im×m. Note that if A is a tight-frame with

redundancy n
m , then ‖A‖2 = n

m .

3. SUPPORT VECTOR MACHINES

A support vector machines (SVM) [6] is a linear threshold

classifier in some feature space, with maximum margin and

consistent with the training examples. Any linear threshold

classifier w(x) corresponds to a vector w ∈ R
n such that

w(x) = sign
(
w�x

)
; as a result, we identify the linear

threshold classifiers with their corresponding vectors. Also

for simplicity we only focus on classifiers passing through

the origin. The results can be simply extended to the general

case.

Whenever the training examples are not linearly separable

soft margin SVM are used. The idea is to simultaneously

maximize the margin and minimize the empirical hinge loss.

More precisely let

H(x)
.
= (1 + x)+ = max{0, 1 + x},

and let S
.
= 〈(x1, l1), · · · , (xM , lM )〉 be a set of M labeled

training data sampled i.i.d from some distribution D. For any

linear classifier w ∈ R
n we define its true hinge loss as

HD(w)
.
= E(x,l)∼D

[(
1− lw�x

)
+

]
,

and its empirical hinge loss

ĤS(w)
.
= E(xi,li)∼S

[(
1− liw

�xi

)
+

]
.

4. EXPLICIT MATRICES WITH AVERAGE-CASE
JOHNSON-LINDENSTRAUSS PROPERTY

4.1. Global Measures of Coherence

Let A be an m×n matrix such that every column of A has unit

�2 norm. The following two quantities measure the coherence

between the columns of A [7]:

• Worst-case coherence μ
.
= maxi,j∈[n]

i �=j

∣∣∣Ai
�Aj

∣∣∣.
• Average coherence ν

.
= 1

n−1 maxi∈[n]

∣∣∣∣∑j∈[n]
j �=i

Ai
�Aj

∣∣∣∣.
Roughly speaking, we can consider the columns of A as n dis-

tinct points on the unit sphere in R
n. Worst-case coherence

then measures how close two distinct points can be, whereas

the average coherence is a measure of the spread of these

points.

4.2. Average-Case Distance-Preserving using Delsarte-
Goethals Frames

In the previous section, we introduced two fundamental mea-

sures of coherence between the columns of a tight-frame. In

this section we construct an explicit sensing matrix (Delsarte-
Goethals frame [8]) with sufficiently small average coherence

ν, and worst-case coherence μ, and show how this coherence

optimality can be related to the performance of the SVM clas-

sifier in the measurement domain.

We start by picking an odd number o. The 2o rows of the

Delsarte-Goethals frame A are indexed by the binary o-tuples

t, and the 2(r+2)o columns are indexed by the pairs (P, b),
where P is an o× o binary symmetric matrix in the Delsarte-

Goethals set DG(o, r) [8], and b is a binary o-tuple. The entry

a(P,b),t is given by

a(P,b),t =
1√
m

iwt(dP )+2wt(b)itP t�+2bt� (1)

where dp denotes the main diagonal of P , and wt denotes

the Hamming weight (the number of 1s in the binary vector).

Note that all arithmetic in the expressions tP t� + 2bt� and

wt(dP )+2wt(b) takes place in the ring of integers modulo 4,

since they appear only as exponents for i. Given P and b, the

vector tP t� + 2bt� is a codeword in the Delsarte-Goethals

code. For a fixed matrix P , the 2o columns A(P,b) (b ∈
F
o
2) form an orthonormal basis ΓP that can also be obtained

by postmultiplying the Walsh-Hadamard basis by the unitary

transformation diag
[
itP t�

]
.

Throughout the rest of this section let 1 denote the all-

one vector. Also let Φ denote the unnormalized DG frame,

i.e., A = 1√
m
Φ. We use the following lemmas to show that

the Delsarte-Goethals frames are low-coherence tight-frames.

First we prove that the columns of the rth Delsarte-Goethals

sensing matrix form a group under pointwise multiplication.
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(a) horizontal (b) vertical (c) other

Fig. 1. Examples of images classified as horizontal (a), vertical (b), and other (c) using the measurement domain SVM classifier

with a DG(11, 0) sensing matrix.

Lemma 4.1. Let G = G(o, r) be the set of unnormalized
columns Φ(P,b) where

φ(P,b),t = iwt(dP )+2wt(b)itP t�+2bt� , where t ∈ F
o
2

where b ∈ F
o
2 and where the binary symmetric matrix P

varies over the Delsarte-Goethals set DG(o, r). Then G is
a group of order 2(r+2)o under pointwise multiplication.

Proof. The proof of Lemma 4.1 is based on the construction

of the DG frames, and is provided in [8].

Next we bound the worst-case coherence and average-

coherence of the Delsarte-Goethals frames.

Corollary 4.1. Let A be an m × n DG(o, r) frame whose
column entries are defined by (1). Then μ ≤ 2r√

m
, and ν =

1
n−1 .

Proof. The proof of Lemma 4.1 is based on the group prop-

erties of the DG frames, and is provided in [8].

Lemma 4.2. Let A be a DG(o, r) frame. Then A is a tight-
frame with redundancy n

m .

Proof. Let t and t′ be two indices in [m]. We calculate the

inner-product between the rows indexed by t and t′. It follows

from Equation (1) that the inner-product can be written as∑
P,b

a(P,b),ta(P,b),t′ =
1

m

∑
P,b

itP t�−t′Pt′�+2bt�−2bt′�

=
1

m

(∑
P

itP t�−t′Pt′�
)(∑

b

(−1)b(t⊕t′)�
)
.

Therefore, since the columns of the matrix form a group under

pointwise multiplication, if t �= t′ then the inner-product is

zero, and is n
m otherwise.

4.2.1. Compressed Learning via the Delsarte-Goethals Frames

Since Delsarte-Goethals frames have optimal worst-case and

average-case coherence values, the measurement domain

SVM classifier is near-optimal.

Theorem 4.1. Let o be an odd integer, and let r ≤ o−1
2 . Let

A be an m × n DG frame with m = 2o, and n = 2(r+2)o.
Let w0 denote the data-domain oracle classifier. Also let S .

=
〈(x1, l1), · · · , (xM , lM )〉 represent M training examples in
the data domain, and let AS .

= 〈(y1, l1), · · · , (yM , lM )〉 de-
note the representation of the training examples in the mea-
surement domain. Finally let ẑAS denote the measurement
domain SVM classifier trained on AS. Then there exist a uni-
versal constant C such that if

m ≥
(
2r+1C log n

ε1

)2

, and k ≤ min

{
mε21

(2C)2 log n
, n

2
3

}

then with probability at least 1− 6
n , HD(ẑAS)−HD(w0) is

at most

O

(
R‖w0‖

√(
2r (logM + log n)√

m
+ σ +

(1 + ε1) log n

M

))
.

(2)

Proof. The proof uses the probabilistic method, and the fact

that the SVM decision is only based on the inner products be-

tween the test example and the support vectors. The proof

shows that with overwhelming probability these inner prod-

ucts are approximately preserved by the projection matrix,

and is provided in [9].

Remark 4.1. Theorem 4.1 guarantees that larger measure-
ment domain dimension m leads to lower measurement do-
main classification loss. In other words HD(ẑAS) is bounded
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SVM # of “horizontal”s # of “vertical”s # of “others”

Data Domain 14 18 23
Measurement Domain 12 15 28

Table 1. Comparison between the classification results of the SVM classifier in the data domain and the SVM classifier in the

measurement domain.

by

HD(w0)+Õ

((
(logM + log n)2

m

) 1
4

+

(
log n

M

) 1
2

+ σ
1
2

)
.

Application: texture classification. Finally we demon-

strate an application of compressed learning in texture clas-

sification. In texture classification, the goal is to classify

images into one of the “horizontal”, “vertical”, or “other”

classes. The information about the the direction of an image

is stored in the horizontal and vertical wavelet coefficients of

that image. Therefore, an SVM classifier in the data (pixel

or wavelet) domain would provide high texture classification

accuracy. Here we show that an SVM classifier trained di-

rectly over the compressively sampled images also has high

performance.

We used the Brodatz texture database [10] which con-

tains 111, 128 × 128 images. First we divided the dataset

into 56 training images and 55 test images, and trained an

SVM classifier from the 128× 128 images. The images were

then projected to a 211 dimensional space using a DG(11, 0)
matrix. We then used the same procedure to train the mea-

surement domain SVM classifier and classified the images

accordingly. Table 1 compares the classification results of

the SVM classifier in the data domain and the SVM classi-

fier in the measurement domain. Figure 1 demonstrates ex-

amples of images in each class. The measurement domain

classifier misclassifies 3 “horizontal” images, 3 “vertical” im-

ages and 1 “others” image. Therefore, the relative classifi-

cation error of the measurement domain SVM classifier is
|14−11|+|18−15|+|23−22|

55 ≈ 12.7%.

5. CONCLUSION

In this paper we introduced compressed learning, a linear
dimensionality reduction technique for measurement-domain

pattern recognition in compressed sensing applications. We

showed that a large family of compressed sensing matrices

satisfy the required properties.

We again emphasize that the dimensionality reduction has

been studied for a long time in many different communities.

In particular, the development of theory and methods that

cope with the curse of dimensionality has been the focus of

the machine learning community for at least 20 years (e.g.,

SVM, complexity-regularization, model selection, boosting,

aggregation, etc). The compressed learning approach of this

section is most beneficial in compressed sensing applications.

The reason is that compressed sensing already projects the

data to some low dimensional space, and therefore the dimen-

sionality reduction can be done as fast and efficiently as the

state-of-the art sensing methods are.
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