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ABSTRACT

Spectrum sensing is a key component of the cognitive radio

(CR) paradigm. Among CR detectors, multiantenna detectors

are gaining popularity since they improve the detection per-

formance and are robust to noise uncertainties. Traditional

approaches to multiantenna spectrum sensing are based on the

generalized likelihood ratio test (GLRT) or other heuristic de-

tectors, which are not optimal in the Neyman-Pearson sense.

In this work, we derive the locally most powerful invariant

test (LMPIT), which is the optimal detector, among those pre-

serving the problem invariances, in the low SNR regime. In

particular, we apply Wijsman’s theorem, which provides us

an alternative way to derive the ratio of the distributions of

the maximal invariant statistic. Finally, numerical simulations

illustrate the performance of the proposed detector.

Index Terms— Cognitive radio (CR), generalized likeli-

hood ratio test (GLRT), locally most powerful invariant test

(LMPIT), multiantenna spectrum sensing.

1. INTRODUCTION

Cognitive radio (CR) paradigm has emerged as a new technol-

ogy to improve the spectrum usage and alleviate the apparent

scarcity of resources [1]. The main idea is to allow the oppor-

tunistic transmission of non-licensed users (secondary users)

to temporally and/or geographically unused bands avoiding

interfering the rightful license owners. Hence, spectrum sens-

ing (detection of primary activity) is a key component of CR

networks. Nevertheless, this is a challenging task due to the

shadowing and fading phenomena, as well as to the low SNR

conditions.

Spectrum sensing techniques may exploit certain features

of the signals, but those approaches usually require a level

of synchronization not achievable in most practical scenar-

ios. Hence, asynchronous detectors are of interest. The most

popular asynchronous spectrum sensing technique is given

by the energy detector (ED), whose performance is seriously

degraded in presence of noise variance uncertainties [2]. To

overcome this problem and improve the detection perfor-

mance, multiantenna detectors may be considered, which are

frequently obtained by deriving the generalized likelihood

ratio test (see [3, 4] and references therein) or other heuristic

approaches. However, none of such techniques results, in

general, in optimal tests.

In this work, we derive the locally most powerful invariant

test (LMPIT) for the problem of testing whether a set of mea-

surements are spatially correlated or not. That is, we obtain

the optimal invariant detector for close hypotheses, or equiva-

lently, for low signal to noise ratios (SNRs). This is a compli-

cated task since we have to obtain the distribution, under each

hypothesis, of the maximal invariant statistic. Nevertheless,

this may be overcome using Wijsman’s theorem [5, 6], which

allows us to calculate the ratio of the distributions of the max-

imal invariant statistic without deriving the distributions, and

even without obtaining the maximal invariant statistic.

2. PROBLEM FORMULATION

In this section we address the problem of spectrum sensing

for cognitive radio networks using spectral monitors equipped

with L antennas. Specifically, we formulate the problem as

a hypothesis test which requires no prior knowledge about

the primary signals, the wireless channel, nor the noise pro-

cesses (beyond spatial independence). The received signals

are downconverted and sampled at the Nyquist rate, assum-

ing no synchronization with any potentially present primary

signal. Hence, the spectrum sensing problem is formulated as

the following hypothesis test

H1 : x[n] = s[n] + v[n],
H0 : x[n] = v[n],

(1)

where s[n] = [s1[n], . . . , sL[n]]
T

is the temporally white sig-

nal received at the L antennas, and v[n] = [v1[n], . . . , vL[n]]
T

is the additive noise vector, which is assumed to be zero-mean

circular complex Gaussian, independent of s[n], and spatially

and temporally white. Under these assumptions, the covari-
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ance matrices of the signal and noise are

E[s[n]sH [n]] = Rs, E[v[n]vH [n]] = D,

where Rs is any positive semi-definite matrix and D is a diag-

onal matrix with positive entries. Moreover, we suppose that

the sum Rs +D is a positive definite matrix without further

structure.

In order to proceed, we assume that s[n] is zero-mean, cir-

cular complex Gaussian, which will result in tractable anal-

ysis and useful detectors, and can also be seen as a worst

case [7] distribution. Therefore, the detection problem in (1)

becomes
H1 : x[n] ∼ CN (0,R1) ,
H0 : x[n] ∼ CN (0,D) ,

(2)

where CN (μ,R) stands for the complex circular Gaussian

distribution with mean μ and covariance matrix R, and R1 =
Rs +D is any positive definite matrix. Hence, under H0 the

covariance matrix is diagonal, whereas it has no additional

structure under H1, beyond being positive definite. To sum-

marize, the spectrum sensing problem has been formulated as

a test for the covariance structure of the Gaussian vector x[n].

3. GENERALIZED LIKELIHOOD RATIO TEST

Let us start by briefly reviewing the generalized likelihood

ratio test (GLRT) [4, 8] for the model (2), which will also

allow us to introduce some important definitions. We shall

consider an experiment producing M ≥ L independent and

identically distributed (iid) realizations of x[n]. Therefore,

the likelihood is given by the product of the individual pdfs,

yielding

p (X;R) =
1

πLM |R|M
exp

[
−M tr

(
R−1R̂

)]
,

where |·| and tr (·) denote the determinant and the trace of

a matrix, respectively. The data matrix is given by X =[
x[0], . . . ,x[M − 1]

]
and R̂ = XXH/M, is the sample co-

variance matrix.

The generalized likelihood ratio (GLR) for the test (2) is

given by

G =

max
D∈D+

p (X;D)

max
R1∈S

p (X;R1)
,

where D+ is the set of diagonal matrices with positive entries

and S is the set of positive definite matrices without further

structure. To find the GLRT we have to obtain the maximum

likelihood estimates of R1 and D, and plug them back into

the GLR. Finally, the test is obtained by comparing the GLR

with a threshold.

The ML estimates are given by R̂1 = R̂ and

D̂ = diag (r̂1,1, . . . , r̂L,L) ,

and taking them into account, the GLRT is given by

G =
|R̂|∏L

k=1 r̂k,k
= |Ĉ|

H0

≷
H1

ηG, (3)

where Ĉ = D̂−1/2R̂D̂−1/2 is the sample coherence matrix

and ηG a properly selected threshold.

4. LOCALLY MOST POWERFUL INVARIANT TEST

In this section we derive the locally most powerful invariant

test (LMPIT) for the detection problem in (2). Typically, the

LMPIT is obtained as follows [9]: (i) identify the invariances

of the problem and describe them as a group of transforma-

tions, (ii) find the maximal invariant statistic, (iii) derive the

distribution of the maximal invariant statistic under both hy-

potheses, (iv) calculate the ratio of the distributions of the

maximal invariant statistic, and (v) apply a Taylor’s expan-

sion of the likelihood ratio.1

The above problem is, in general, very difficult, which is

not only due to the need of obtaining the distributions of the

maximal invariant statistic, but also due to the need of an ex-

plicit formulation for the maximal invariant statistic. An alter-

native way to derive the LMPIT that circumvents this problem

is based on Wijsman’s theorem [5, 6], which allows us to di-

rectly obtain the maximal invariant density ratio even without

an explicit expression for the maximal invariant statistic. In

particular, this theorem states that, under some mild condi-

tions, the likelihood ratio of the maximal invariant statistic is

given by

L =

∫
G p (g(y);H1) |Jg| dg∫
G p (g(y);H0) |Jg| dg ,

where G is the group of transformations under which the test

is invariant, |Jg| denotes the absolute value of the Jacobian

of the transformations g(·) ∈ G and dg is an invariant group

measure. The group of invariant transformations for our prob-

lem is

G = {g : x[n] → g(x[n]) = PGx[n],P ∈ P,G ∈ D} ,

where D is the set of diagonal matrices and P the set of per-

mutation matrices.2 In words, we focus on tests preserving

the invariances of the testing problem in (2), which consist

of permutations and scalings of the elements of x[n]. More-

over, we have to point out that considering just one of these

invariances does not allow us to derive the LMPIT.

1Step (v) is only necessary if the likelihood ratio depends on the unknown

parameters. Otherwise, the density ratio of the maximal invariants would

provide the uniformly most powerful invariant test (UMPIT) statistic.
2There is an additional invariance, right multiplication of the data matrix

by unitary matrix, but it is not taken into account since it is removed in the

sufficient statistic, namely R̂.
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Now, due to the problem invariances, we may assume

without loss of generality that

S = R−1
1 =

⎡
⎢⎢⎢⎣

1 s1,2 · · · s1,L
s2,1 1 · · · s2,L

... · · · . . .
...

sL,1 sL,2 · · · 1

⎤
⎥⎥⎥⎦ ,

and D̂ = I, which yields

R̂ = Ĉ =

⎡
⎢⎢⎢⎣

1 ĉ1,2 · · · ĉ1,L
ĉ2,1 1 · · · ĉ2,L

... · · · . . .
...

ĉL,1 ĉL,2 · · · 1

⎤
⎥⎥⎥⎦ .

Hence, the ratio of densities is given by

L =

∑
P

∫
D
|S|M |G|M e−M tr(PTSPGĈGH) dG∑

P

∫
D
|D|−M |G|M e−M tr(PTD−1PGĈGH) dG

,

and it is straightforward to show that

L ∝
∑
P

∫
D

|G|M e−M tr(GGH) e−α dG, (4)

where ∝ stands for equality up to additive and multiplicative

constant (not depending on data) terms, and

α = M tr
[
S̃G

(
Ĉ− I

)
GH

]
.

with S̃ = PTSP. Here, we must notice that (4) is a func-

tion of the unknown parameters, which allows us to conclude

that, in general, there does not exist a uniformly most pow-

erful invariant test (UMPIT). The only exception is the case

with L = 2 antennas, where the UMPIT coincides with the

GLRT, and reduces to the evaluation of the correlation coef-

ficient, i.e., |ĉ1,2|. Due to the non-existence of an UMPIT,

we focus on the challenging low-SNR scenario, which is par-

ticularly important in CR networks. In this region we have

S � I ⇔ α � 0 and, using a second order Taylor’s series

approximation of e−α around α = 0, eq. (4) may be approxi-

mated as follows

L ∝
∑
P

∫
D

|G|M e−M tr(GGH) (α2 − 2α
)
dG. (5)

Due to the lack of space, the technical details of the

derivation are ommited and will be presented in a forthcom-

ing journal version of the paper. Nevertheless, the proof is

sketched for completeness. First, noting the symmetries of

the terms in α, it may be shown that the linear term in (5) is

zero. By similar arguments, it is easily shown that

L ∝
∑
P

∫
D

|G|M e−M tr(GGH) α2dG = Δ

L∑
k,m=1
k �=m

|ĉm,k|2,

where

Δ =
∑
P

|s̃k,m|2
∫
D

|G|M e−M tr(GGH) |gm|2|gk|2dG,

which does not depend on the indexes {k,m} and, therefore,

it has been possible to take it out of the summation. Finally,

taking into account that
∑L

k=1 |ĉk,k|2 = L, we can conclude

that the LMPIT statistic is given by

L ∝
L∑

k,m=1

|ĉm,k|2 = ‖Ĉ‖2F
H1

≷
H0

ηL. (6)

4.1. Further comments

We must point out that the LMPIT given by (6) has been pre-

viously proposed as an ad-hoc detector in [4], where the au-

thors introduced the Frobenius norm of the coherence matrix

as a computationally cheaper detector, in comparison to the

GLRT. However, we have shown that (6) is actually the opti-

mal detector, among those invariant, in the low SNR regime.

Additionally, it was evidenced by simulations in [10] that the

detector based on the Frobenius norm works better than the

GLRT for low SNR and/or low sample size.

5. NUMERICAL RESULTS

The performance of the LMPIT is evaluated in this section by

means of Monte Carlo simulations. The covariance matrices,

D and Rs, are fixed during the experiment and the SNR is

defined as follows

SNR (dB) = 10 log10
tr (Rs)

tr (D)
.

In the first experiment, we obtain the receiver operating

characteristic (ROC) curves for different number of samples

and a fixed SNR. We have considered the following param-

eters: L = 6 antennas, SNR = 0dB, the signal covariance

matrix is Rs = F diag (5, 1.4, 1.3, 1.2, 1.1, 1)FH , where F
is the 6 × 6 Fourier matrix, the noise levels at each antenna

are 0.5 dB, −1 dB, 0 dB, 1 dB, −0.5 dB and 0 dB; and M =
10, 30, 50, 70, and 90. The ROC curve3 for each value of M
is shown in Figure 1, where we can see that the LMPIT out-

performs the GLRT for all values of M in this scenario (close

hypotheses or low SNR). These differences will be even larger

for greater values of L. However, we have not considered

those scenarios since they are not typical in CR networks.

The second experiment analyzes the performance of the

GLRT and the LMPIT for different values of the SNR. Figure

2 shows the probability of missed detection (pm) for a fixed

probability of false alarm pfa = 0.05 and M = 30. The

3Since the GLRT and the LMPIT are invariant tests, the thresholds may

be obtained for D = I by means of simulations, and those thresholds will be

valid for any choice of D.
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Fig. 1. ROC curves for different values of M in an experiment

with L = 6 antennas and SNR = 0dB.

remaining parameters are the same as in the previous exper-

iment. As expected, the performance of the LMPIT is better

for these small/moderate values of the SNR.

6. CONCLUSIONS

We have derived the locally most powerful invariant test

(LMPIT) for testing whether a set of measurements are spa-

tially correlated. That is, focusing on the family of tests

preserving the invariances of the detection problem, we have

obtained the optimal test in the case of close hypotheses.

Interestingly, it turns out that the LMPIT coincides with a

previously proposed heuristic detector. In the derivation of

the test, Wijsman’s theorem allows us to obtain the density ra-

tio without deriving the distributions of the maximal invariant

statistic. Finally, some simulation results illustrate the better

performance of the LMPIT for small and moderate values of

the SNR.
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