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ABSTRACT
We present a novel primal-dual analysis on a class of NP-

hard sparsity minimization problems to provide new interpre-

tations for their well known convex relaxations. We show that

the Lagrangian bidual (i.e., the Lagrangian dual of the La-

grangian dual) of the sparsity minimization problems can be

used to derive interesting convex relaxations: the bidual of the

�0-minimization problem is �1-minimization; and the bidual

of �0,1-minimization for enforcing group sparsity on struc-

tured data is �1,∞-minimization problem. Intuitions from the

bidual-based relaxation are used to introduce a new family of

relaxations for the group sparsity minimization problem.

Index Terms— Lagrangian biduality, group sparsity

1. INTRODUCTION

The �0-minimization problem aims to find the solution to

an underdetermined system of equations Ax = b, A ∈
R

m×n, b ∈ R
m, where m � n, by regularizing its solution

to be sparse, i.e., having very few non-zero entries, as

(P0) : x∗
0 = argmin

x∈Rn

‖x‖0 s.t. Ax = b. (1)

The problem (P0) is intended to seek entry-wise sparsity in

x and is known to be NP-hard in general. This problem has

found broad applications in error decoding, image denoising,

face recognition and subspace clustering, to name a few.

In recent years, the notion of group sparsity has attracted

increasing attention. In this case, one assumes that the ma-

trix A has some underlying structure and can be grouped

into blocks: A =
[
A1, · · · , AK

]
, where Ak ∈ R

m×nk and∑K
k=1 nk = n. Accordingly, the vector x is split into several

blocks as x =
[
x�
1 , · · · ,x�

K

]�
, where xk ∈ R

nk . In this

case, it is of interest to estimate x with the least number of

blocks containing non-zero entries by solving the problem:

(P0,p) : x∗
0,p = argmin

x

K∑
k=1

I(‖xk‖p > 0), s.t.

Ax
.
=

[
A1, · · · , AK

] [
x�
1 , · · · ,x�

K

]�
= b,

(2)

where I(·) ∈ {0, 1} is the indicator function. The expression∑K
k=1 I(‖xk‖p > 0) can be written as ‖[‖x1‖p · · · ‖xK‖p

]‖0,

which is also denoted as �0,p(x), the �0,p-norm of x.

Group sparsity lends itself naturally to applications such

as face recognition using sparse representation [8], where the

columns of A are vectorized images of human faces that can

be grouped into blocks of different subjects. Furthermore,

the problem of robust face recognition considers an interest-

ing modification: b = Ax + e, where e ∈ R
m represents

sparse error corruption on the observation b [9]. It can be

argued that this model can be solved as a group sparsity prob-

lem in (2), where the coefficients of e would be the (K +1)th

group. However, this problem has a trivial solution for e = b
and x = 0. Hence, one should consider the following mixed
sparsity minimization problem where x has very few number

of non-zero blocks and the error e is entry-wise sparse:

(MP0,p) :{x∗
0,p, e

∗
0} = argmin

(x,e)

�0,p(x) + γ‖e‖0, s.t.

[
A1, · · · , AK

] [
x�
1 , · · · ,x�

K

]�
+ e = b,

(3)

where γ ≥ 0 is a tradeoff parameter.

Due to the use of the �0-norm, the optimization problems

in (1)–(3) are all NP-hard in general. Recent works have fo-

cused on developing tractable convex relaxations for these

problems. The relaxation for entry-wise sparsity replaces the

�0-norm with the �1-norm [4]. Relaxations for group sparsity

replace the �0,p-norm with the �1,p-norm, where �1,p(x)
.
=∥∥[‖x1‖p · · · ‖xK‖p

]∥∥
1
=

∑K
k=1 ‖xk‖p. These relax-

ations are also used for the mixed sparsity case [6].

Paper contributions. In this work, we present a new frame-

work for analyzing convex relaxations of the problems in (1)–

(3). These relaxations have previously been analyzed from

several different viewpoints such as convex polytope theory

[5] and submodularity [1]. We present a novel optimization-

theoretic interpretation based on Lagrangian duality.

We introduce a new class of equivalent optimization

problems for (P0), (P0,p) and (MP0,p), and derive their La-

grangian duals. We then consider the Lagrangian dual of the

Lagrangian dual to get a new optimization problem called

the Lagrangian bidual of the primal problem. We show that

the Lagrangian biduals are convex relaxations of the original

sparsity minimization problems. Importantly, the derived La-

grangian biduals for the (P0) and (P0,p) problems correspond

to minimizing the �1-norm and the �1,∞-norm, respectively.

We note that there are other works on using Lagrangian

biduality to derive relaxations of sparsity minimization prob-
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lems [3, 7]. The work most related to this paper is that of [3],

which derives a semi-definite program (SDP) as the bidual

for the problem P0. In contrast, we derive the well-known

�1-minimization problem to be the bidual for the problem P0,

which is a linear program and easier to solve than an SDP.

2. LAGRANGIAN BIDUALITY

In what follows, we will derive the Lagrangian bidual for:

x∗ = argmin
x

K∑
k=1

[
αkI(‖xk‖p > 0) + βk‖xk‖0

]
,

s.t.
[
A1, · · · , AK

] [
x�
1 , · · · ,xK

]�
= b,

(4)

where ∀k = 1, . . . ,K : αk ≥ 0 and βk ≥ 0. This optimiza-

tion problem generalizes the entry-wise sparsity and group

sparsity cases (also see Section 3). Given any unique, finite

solution x∗ to (4), there exists a constant M > 0 such that the

absolute values of the entries of x∗ are less than M , namely,

‖x∗‖∞ ≤ M . Note that if (4) does not have a unique solution,

it may not be possible to choose a finite-valued M that upper

bounds all the solutions. In this case, a finite-valued M may

be viewed as a regularization term for the desired solution.

For such M , we consider the following modified version of

(4) where we introduce the box constraint that ‖x‖∞ ≤ M :

x∗
primal = argmin

x

K∑
k=1

[
αkI(‖xk‖p > 0) + βk‖xk‖0

]
,

s.t. Ax = b and ‖x‖∞ ≤ M.

(5)

Note that M is chosen such that x∗
primal solves (4).

In our exposition, we will refer to �p-minimization and

�p,q-minimization as �p-min and �p,q-min, respectively

Primal problem. We now frame an equivalent optimization

problem for (5). Let z ∈ {0, 1}n be an entry-based spar-

sity indicator vector for x, i.e., zi = 0 if xi = 0 and zi = 1
otherwise. We introduce a group-based sparsity indicator vec-

tor g ∈ {0, 1}K , whose kth entry gk denotes whether the kth

block xk contains non-zero entries or not, namely, gk = 0 if

xk = 0 and gk = 1 otherwise. To express this constraint,

we introduce a matrix Π ∈ {0, 1}n×K , such that Πi,j = 1
if the ith entry of x belongs to the jth block and Πi,j = 0
otherwise. We separate the positive component and negative

component of x as x+ ≥ 0 and x− ≥ 0, respectively, such

that x = x+ − x−.

Given these definitions, (5) can be reformulated as

{x∗
+,x

∗
−, z

∗, g∗}= argmin
{x+,x−,z,g}

[
α�g + β�z

]
, s.t.

(a) x+ ≥ 0, (b) x− ≥ 0, (c) g ∈ {0, 1}K , (d) z ∈ {0, 1}n

(e) A(x+ − x−) = b, (f) Πg ≥ 1

M
(x+ + x−), and

(g) z ≥ 1

M
(x+ + x−), where

(6)

α =
[
α1, · · · , αk

]�∈R
k and β = [· · ·βk, · · · , βk︸ ︷︷ ︸

nktimes

· · · ]�∈R
n.

Constraints (a)–(d) enforce the aforementioned conditions

on the values of the solution. While constraint (e) enforces the

condition that the original system of linear equations is satis-

fied, the constraints (f) and (g) ensure that the group sparsity

indicator g and the entry-wise sparsity indicator z are consis-

tent with the group and entry-wise sparsity of x.

Lagrangial dual. The Lagrangian function for (6) is given as

L(x+,x−, z, g,λ1,λ2,λ3,λ4,λ5) =

α�g + β�z − λ�
1 x+ − λ�

2 x− + λ�
3 (b−Ax+ +Ax−)

+ λ�
4 (

1

M
(x+ + x−)−Πg) + λ�

5 (
1

M
(x+ + x−)− z),

(7)

where λ1 ≥ 0, λ2 ≥ 0, λ4 ≥ 0, and λ5 ≥ 0. We now

minimize L(·) with respect to x+, x−, g and z to obtain

the Lagrangian dual function [2]. Notice that if the coeffi-

cients of x+ and x−, i.e., 1
M (λ4 + λ5) − A�λ3 − λ1 and

1
M (λ4+λ5)+A�λ3−λ2 are non-zero, the minimization of

L(·) with respect to x+ and x− is unbounded below. Hence,

the constraints that these coefficients are equal to 0 form con-

straints on the dual variables. Next, consider the minimization

of L(·) with respect to g. Since gk only takes values 0 or 1,

its optimal value ĝk that minimizes L(·) is given as

ĝk =

{
0 if αk − (Π�λ4)k > 0, and

1 otherwise.
(8)

A similar expression can be computed for the minimization

with respect to z. Using these results, the Lagrangian dual

problem can be derived as the following linear program (LP):

{y∗
i }5i=1 = argmax

{yi}5
i=1

[
y�
1 b+ 1�y4 + 1�y5

]
, s.t. (a) y2 ≥ 0,

(b) y3 ≥ 0, (c) y4 ≤ 0, (d) y5 ≤ 0 (e) y4 ≤ α−Π�y2,

(f) y5 ≤ β − y3, and (g) |A�y1| ≤
1

M
(y2 + y3).

(9)

Lagrangian bidual. We can similarly derive the Lagrangian

dual of (9), i.e., the Lagrangian bidual of (6), as:

{x∗
+,x

∗
−, z

∗, g∗} = argmin
{x+,x−,z,g}

α�g + β�z s.t.

(a) x+ ≥ 0, (b) x− ≥ 0, (c) g ∈ [0, 1]K , (d) z ∈ [0, 1]n,

(e) A(x+ − x−) = b, (f) Πg ≥ 1

M
(x+ + x−)

and (g) z ≥ 1

M
(x+ + x−).

(10)

Comparing (6) and (10), the discrete valued variables z
and g in (6) have been relaxed in (10) to take real values be-

tween 0 and 1. Since z ≤ 1 and x = x+ − x−, constraint
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(g) in (10) implies that the solution x∗ satisfies ‖x∗‖∞ ≤ M .

Moreover, given that g and z are relaxed to take real values,

the optimal values for g∗k and z∗i are 1
M ‖x∗

k‖∞ and 1
M |x∗

i |,
respectively. Hence, we can eliminate constraints (f) and (g)

by replacing z and g by these optimal values. It can then be

verified that solving (10) is equivalent to solving the problem:

x∗
bidual = argmin

x

1

M

K∑
k=1

[
αk‖xk‖∞ + βk‖xk‖1

]
,

s.t. (a) Ax = b and (b) ‖x‖∞ ≤ M.

(11)

This is the Lagrangian bidual for (6).

3. THEORETICAL RESULTS FROM BIDUALITY

In this section, we first describe some properties of the bidu-

ality framework in general. We will then focus on some im-

portant results for entry-wise sparsity and group sparsity.

Theorem 1. The optimal value of the bidual in (11) is a lower
bound on the optimal value of the primal problem in (6).

Proof. Since there is no duality gap between a linear pro-

gram and its Lagrangian dual [2], the optimal values of the

Lagrangian dual in (9) and the Lagrangian bidual in (11) are

the same. Moreover, the optimal value of a primal minimiza-

tion problem is always bounded below by the optimal value

of its Lagrangian dual [2]. We hence have the result.

Remark 1. Since the original primal problem in (6) is NP-
hard, the duality gap between the primal and its dual in (9)

is non-zero in general. Moreover, as we increase M (i.e., a
more conservative estimate), the duality gap increases.

M in (5) should preferably be equal to ‖x∗
primal‖∞, which

may not be possible to estimate accurately in practice. There-

fore, it is of interest to analyze the effect of taking a very

conservative estimate of M , i.e., choosing a large value for

M . Consider the following modification of the bidual:

x†
bidual = argmin

x

K∑
k=1

[
αk‖xk‖∞ + βk‖xk‖1

]
s.t. Ax = b,

(12)

where we have dropped the box constraint (b) in (11). No-

tice that ∀M ≥ max{‖x∗
primal‖∞, ‖x†

bidual‖∞}, we have that

x∗
bidual = x†

bidual. Hence, using a conservatively large value of
M is equivalent to solving the modified bidual in (12).

3.1. Results for entry-wise sparsity minimization

When α1 = · · · = αK = 0 and β1 = · · · = βK = 1, the

problem in (4) reduces to the entry-wise sparsity minimiza-

tion problem in (1). Importantly, we conclude from (12) that

solving the Lagrangian bidual with a conservative estimate of

M is equivalent to solving the problem:

x†
entry-wise-bidual = argmin

x
‖x‖1 s.t. Ax = b, (13)

which is the well-known �1-norm relaxation for (P0) [4].

Hence, we provide a new interpretation for this relaxation:

The �1-min problem in (13) is the Lagrangian bidual of the
�0-min problem in (1).

Our bidual-based relaxation is different from the SDP

bidual-based relaxation derived by [3], due to the different

(albeit equivalent) reformulations of the primal problem.

3.2. Results for group sparsity minimization

When ∀k = 1, . . . ,K, αk = 1 and βk = 0, (4) reduces to the

group sparsity minimization problem in (2). Hence, we con-

clude from (12) that solving the bidual to the group sparsity

problem with a conservative estimate of M is equivalent to:

x†
group-bidual = argmin

x

K∑
k=1

‖xk‖∞ s.t. Ax = b, (14)

which is the convex �1,∞-norm relaxation of the �0,p-min

problem (2). In addition to the submodularity-based interpre-

tation [1], we now have: the �1,∞-min problem in (14) is the
Lagrangian bidual of the �0,p-min problem in (2).

Interestingly, we get the �1,∞-norm for the bidual due to

the constraint (f) in (6) which implies that gk ≥ ‖xk‖∞
M . Sim-

ilar relaxations can be derived for other p-norms for finite-

valued p, by replacing this with gk ≥ ‖xk‖p

Mnk
where nk de-

notes the number of entries in xk, i.e., the number of columns

in Ak. Now, if we relax g to take values in [0, 1] as observed

in our derived bidual, we get the following relaxations for (6):

x∗
1,p=argmin

x

K∑
k=1

‖xk‖p
Mnk

s.t. Ax = b and ‖x‖∞ ≤ M. (15)

Compare the above to the following family of relaxations:

x†
1,p = argmin

x
�1,p(x) s.t. Ax = b and ‖x‖∞ ≤ M. (16)

For a conservatively large M , the solutions of (16) are pre-

cisely the solutions to the �1,p relaxations discussed in [6]. In

contrast to (15), the relaxations in (16) ignore scaling the cost

function by the block lengths. This may result in biases due

to difference in sizes of training data for each class.

Now, since (15) is obtained by relaxing the feasible values

of g in (6), its optimal value
∑K

k=1

‖x∗
1,p,k‖p

Mnk
is lower than

that of (6), where x∗
1,p,k ∈ R

nk denotes the kth block of x∗
1,p.

Hence, this value is a lower bound for the group sparsity. We

will show that the bound for group sparsity is the tightest for
p = ∞, i.e., with the bidual relaxation.

Notice that x∗
1,∞ is the solution to the bidual (11) for

the group sparsity case. Theorem 1 states that for any

M ≥ ‖x∗
0,p‖∞, a lower bound for �0,p(x

∗
0,p) is given by

1
M �1,∞(x∗

1,∞). We will show that the optimal value of (15)

for finite p, is not greater than 1
M �1,∞(x∗

1,∞). By the op-

timality of x∗
1,p, we have

∑K
k=1

‖x∗
1,p‖p

Mnk
≤ ∑K

k=1

‖x∗
1,∞‖p

Mnk
.

We also know that
‖x∗

1,∞,k‖p

nk
≤ ‖x∗

1,∞,k‖∞. Hence, we have∑K
k=1

‖x∗
1,p‖p

Mnk
≤ ∑K

k=1

‖x∗
1,∞‖∞
M =

�1,∞(x∗
1,∞)

M .
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4. EXPERIMENTS

Now, we present experiments on synthetically generated data

to show that the performance of the bidual relaxation depends

on the distribution of the entries of x. More comprehensive

experiments on synthetically generated data as well as face

recognition can be found in our technical report at http:
//arxiv.org/abs/1201.3674.

We set the dimension of the ambient space to n = 500
and vary the number of blocks in A from K = 60 to 100 in

steps of 10. The size of each block in A is fixed as nk = 20.

Hence, m = Knk varies from 1200 to 2000 in steps of 200.

We ensure that no two blocks of A are linearly dependent.

The number Knz of non-zero blocks in x is varied from

1 to 12. We consider two different test cases, where the en-

tries of each block in x are drawn from two different distri-

butions. The coefficients are drawn from the normal distribu-

tion N (0, 1) in the first case and from N (20, 1) in the second

case. The fraction of non-zero entries in e is set as Knz

K . In

both cases, the entries of e are drawn from N (0, 1).
We solve for x and e by solving the following problem:

min
{x,e}

K∑
k=1

‖xk‖p + γ‖e‖1, s.t. Ax+ e = b. (17)

In our tests, we set γ = 1 and compare the solutions obtained

using p = 1, 2 and ∞. MOSEK (www.mosek.com) is used

as the numerical solver. For p = ∞, this reduces to the bid-

ual relaxation (12) of the mixed sparsity problem (5) with a

conservative estimate of M . The case p = 2 corresponds to

a standard relaxation for minimizing group sparsity [6]. The

case p = 1 reduces to minimizing entry-wise sparsity of x.

A representative subset of the results is shown in Figure 1

and detailed results are given in our technical report. We see

from Figure 1(a) that the �1,2-based relaxation performs better

in the first test case. On the other hand, Figure 1(b) shows that

the �1,∞-based relaxation performs better in the second case

when the entries of x are clustered around a non-zero value.

The performance differences are linked to the norms used in

the relaxation and the distribution of the entries in x.

5. DISCUSSION
We have presented a novel analysis to interpret convex relax-

ations of sparsity minimization problems as their Lagrangian

biduals. The pivotal point of this analysis is the formulation of

mixed-integer programs which are equivalent to the original

primal problems. Biduality is only one of the many choices

for generating relaxations and the performance of a particular

relaxation ultimately depends on the distribution of the data

being estimated.
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Fig. 1. Representative results for the two test cases. The top

and bottom rows in each subfigure show results for K = 60
and K = 100, respectively. The color coding for the results is

�1-red squares, �1,2-green diamonds and �1,∞-black circles.
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