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ABSTRACT 

 
This paper proposes a Majorization-Minimization approach 
for solving the synthesis and analysis prior joint-sparse 
multiple measurement vector reconstruction problem. The 
proposed synthesis prior algorithm yielded the same results 
as the Spectral Projected Gradient (SPG) method. The 
analysis prior algorithm is the first to be proposed for this 
problem. It yielded considerably better results than the 
proposed synthesis prior algorithm. For problems of a given 
size, the run times for our proposed algorithms are fixed; 
unlike SPG where the reconstruction time also depends on 
the support size of the vectors. 
 

Index Terms  Compressed Sensing, Multiple 
Measurement Vector, Convex Optimization 

1. INTRODUCTION 

In Compressed Sensing (CS) the problem is to recover a 
sparse vector from its random low dimensional Fourier 
projections that may be corrupted by noise. 

1 1 1,  n n N N ny H x n N     (1) 

where x is the high dimensional s-sparse vector to be 
recovered, H is the random/Fourier projection, y is the lower 
dimensional projection of x 
be Normally distributed). 
An extension of the Single Measurement Vector (SMV) 
problem represented by (1) is the Multiple Measurement 
Vector (MMV) problem. For MMV, a set of vectors with a 
common sparse support are to be recovered. By common 
support, it is meant that all the vectors have non-zero 
coefficients at the same positions. The MMV model is, 

,  1...rj j jy Hx j     (2) 

 
where yj is the lower dimensional projection corresponding 
to xj (all  xj  have a common support as mentioned earlier). 
The rest of the symbols have the same meanings as in (1). 
It is possible to represent (2) in the following compact form, 
 
Y HX N      (3) 

where 1 | ... | rY y y , 1 | ... | rX x x and 1 | ... | rN . 

Since the unknown vectors (x
support, the matrix X will be row-sparse. The MMV 
problem has been studied in the past [1-5]. Optimization 

based recovery methods recover X by solving the following 
problem 
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X X ( jX is the vector whose entries 

form the jth row of X), .
F

denotes the Frobenius norm (l2-

norm of all the elements) of the matrix  and  is a parameter 
dependent on the variance of noise. 

of p. such as p<1, make the problem non-convex, m=2 and 
p=1 are used [6]. Thus the inverse problem (3) is solved via, 
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The choice of such values for the norms can be understood 
intuitively. The l2-norm over the rows ( jX
non-zero values on all the elements of the row vector 

whereas the summation over the l2-norm (
2

1

r
j

j

X ) 

enforces row-sparsity, i.e. the selection of few rows. 
MMV problems arise in varied areas of applied signal 

processing like communication [7], Seismic Imaging [8] and 
MRI [9, 10]. For example, in multi-echo T1/T2 weighted 
MR imaging, the same anatomical cross section is imaged 
by varying certain parameters in order to acquire images 
with differing tissue contrasts. It has been argued in [9, 10], 
that such multi-echo images have a common sparse support 
in the wavelet domain. 

It is possible to recover the signal by (5) when the 
signal itself is sparse. However in MRI, the image to be 
recovered is not sparse, but has a sparse representation in 
some transform domains (e.g. finite difference). In such a 
case the synthesis prior formulation (5) is not applicable. 
Once needs to employ the following analysis prior 
formulation, 

2

2,1
min  subject to 

FX
AX Y HX   (6) 

where A is the sparsifying transform. 
The Spectral Projected Gradient L1 algorithm [6] solves 

the synthesis prior joint-sparse MMV recovery problem (5). 
There is no existing algorithm to solve the analysis prior 
problem (6). In this paper we propose algorithms for solving 
the synthesis prior (5) and the analysis prior problems using 
the Majorization-Minimization approach. These algorithms 
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are derived in Section 2 below and in Section 3, the detailed 
experimental results are shown for simulated data. 

2. INFORMAL DERIVATION OF ALGORITHMS 

The Majorization-Minimization (MM) approach [11, 12] 
is employed to derive solution to the following problems, 

Synthesis prior: 
2

2,1
min  subject to 

FX
X Y HX  

Analysis prior: 
2

2,1
min  subject to 

FX
AX Y HX  

Instead of solving the aforesaid constrained problems, we 
propose solving their unconstrained counterparts, 
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2 FX
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min ( ), where ( )

2 FX
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The constrained and the unconstrained formulations are 
equivalent for proper choice of the Lagrangian . 
Unfortunately for most practical problems it is not possible 
to determine  explicitly by analytical means. Therefore, 

, given the value of , we will reach 
the solution of the constrained problem by iteratively 
solving a series of unconstrained problems with decreasing 
values of . Such cooling techniques are successful [13-15] 
since the Pareto curve for the said problem is smooth [13]. 

2.1. Majorization Minimization 

Owing to the limitations in space, we do not derive 
every step of the algorithm since they can be found in 
previous works which will be duly referred. Following the 
MM technique outlined in [14] (and successfully used in 
[17, 18]), in each iteration (i), the aforesaid minimization 
problems on J1 and J2 can be substituted by the following, 
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( ) ( ) ( )1
( )i i T iB X H Y HX    (11) 

where  is greater than the maximum eigenvalue of HTH. 
The update (11) is known as the Landmeyer iterations. 

2.2. Solving the synthesis prior problem 

For the synthesis prior problem, we need to solve (9) at 
each iteration. Taking the derivative of ( )

1 ( )iG X we get, 
( )

( )1 ( )
( )

i
idG X

X B signum X
dX

  (12) 

where 
1( ) ( )

2
( )i j idiag X X . 

Setting the derivative to zero and re-arranging, we get, 

( )B X signum X     (13) 

This can be solved by the following soft-thresholding, 

( 1) ( ) ( )( )max(0, )i i iX signum B B   (14) 

Equations (11) and (14) suggest a compact solution for 
the unconstrained synthesis prior problem. This is given in 
the following algorithm. 

Initialize: 
(0) 0X  

Repeat until convergence: 

( ) ( ) ( )1
( )i i T iB X H Y HX  

( 1) ( ) ( )( )max(0, )i i iX signum B B  

2.3. Solving the analysis prior problem 

Solving the analysis prior problem requires 
minimization of (10) in each iteration. Taking the derivative 
of ( )

2 ( )iG X  we get, 
( )

( )2 ( )i
i TdG X

X B A AX
dX

   (15) 

where 
1( )

2
( )i jdiag W and M r M N N rW A X . 

Setting the gradient to zero we get, 

( )( )T iI A A X B     (16) 

It is not possible to solve (16) directly as the sparsifying 
transform (A) in most cases is available as a fast operator 
and not as an explicit matrix. The derivation of the solution 
to (16) is similar to the derivation of analysis prior sparse 
optimization [11] and analysis prior group-sparse 
optimization [16]. Thus we skip the detailed derivations; 
and show the final update equations, 

( 1) 1 1 ( ) ( ) ( )( ) ( ( ))i i i T iZ cI cZ A B A Z  (16) 

( 1) ( ) ( )i i T iX B A Z     (17) 
where c is greater than the maximum eigenvalue of ATA. 

This leads to the following algorithm for solving the 
analysis prior joint-sparse optimization problem. 

Initialize: 
(0) 0X  

Repeat until convergence: 

( ) ( ) ( )1
( )i i T iB X H Y HX  

( 1) 1 1 ( ) ( ) ( )( ) ( ( ))i i i T iZ cI cZ A B A Z  

( 1) ( ) ( )i i T iX B A Z  

2.3. Solving the constrained problem via cooling 

We have derived algorithms to solve the unconstrained 
problems. As mentioned before, the constrained and the 

them in general. When faced with a similar situation, we 
employed the cooling technique following previous studies 
[13].  
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The cooling technique solves the constrained problem 

inner loop solves the unconstrained problem for a specific 

unconstrained problem reaches the desired solution. Such a 
cooling technique works because the pareto curve between 
the objective function and the constraint is smooth. The 
cooling algorithm for the synthesis and analysis prior are: 
Synthesis Prior Algorithm 
Initialize: (0) 0X  < max(PTx)  
Choose a decrease factor (DecFac  

Outer Loop: While1 2|| ||Fy Hx  

Inner Loop: While2 
( ) ( 1)

( ) ( 1)

i i

i i

J J
Tol

J J
 

( ) ( ) 2 ( )
2,1|| || || ||i i i

FJ Y HX X  

Compute: ( ) ( ) ( )1
( )i i T iB X H Y HX   

Compute: ( 1) ( ) ( )( )max(0, )i i iX signum B B  

( 1) ( ) 2 ( )
2,1|| || || ||i i i

FJ Y HX X  

End While2 (inner loop ends) 
DecFac  

End While1 (outer loop ends) 

 
Analysis Prior Algorithm 
Initialize: (0) 0X  < max(PTx)  
Choose a decrease factor (DecFac  

Outer Loop: While1 2|| ||Fy Hx  

Inner Loop: While2 
( ) ( 1)

( ) ( 1)

i i

i i

J J
Tol

J J
 

( ) ( ) 2 ( )
2,1|| || || ||i i i

FJ Y HX AX  

Compute: ( ) ( ) ( )1
( )i i T iB X H Y HX   

Update: ( 1) 1 1 ( ) ( ) ( )( ) ( ( ))i i i T iZ cI cZ A B A Z  

Update: ( 1) ( ) ( )i i T iX B A Z  
( 1) ( ) 2 ( )

2,1|| || || ||i i i
FJ Y HX AX  

End While2 (inner loop ends) 
DecFac  

End While1 (outer loop ends) 

3. EXPERIMENTAL RESULTS 

We followed the experimental procedure as in [1]. The 
experiments were carried out on AMD64 machine with 4GB 
RAM running Matlab 2009a.  

The first experiment shows that our proposed algorithm 
is as good as the benchmark Spectral Projected Gradient 
method [6] for solving the synthesis prior problem. The 
length of the vectors to be recovered (N) is 60 and the length 
of the measured vectors (n) is 20. An i.i.d Gaussian matrix 
of size 20 x 60 was used for projection (H). The following 
graph for recovery rates was produced by varying the 
number of sparse rows from one to n=20. The number of 
input/output vectors (r) was taken to be 2, 5 and 10 for three 

sets of experiments. The results are shown for 1000 trials for 
each configuration. If the Normalized Mean Squared Error 
(NMSE) between the recovered and the groundtruth is less 
than 10-3, the recovery is considered successful. 

 
Fig. 1. Comparison of recovery rate for proposed algorithm and SPG for 
synthesis prior problem. 

It is concluded from Fig. 1 that the recovery rates for 
our proposed algorithm and SPG are exactly the same. This 
is not surprising since both of them solve the same convex 
problem. Fig. 1 corroborates the findings in [1], that when 
the number of measurements increases (as r increases), the 
recovery improves, i.e. the curves shift to the right. 

The average reconstruction times for SPG and our 
proposed method are shown in Fig. 2. (for r=5). The graph 
shows that the time taken by our proposed algorithm for 
problems of the same size is almost same. But for SPG, the 
time increases as the number of sparse rows increase. 

 
Fig. 2. Comparison of recovery time for proposed algorithm and SPG for 
synthesis prior problem. 
     The second experiment compares the synthesis prior 
algorithm with  the analysis prior algorithm. The sparsifying 
transform (A) was chosen to be redundant Haar. The 
measurement matrix (H) for analysis prior algorithm is an 
i.i.d Gaussian matrix. For the synthesis prior algorithm, the 
projection matrix was the same Gaussian matrix post 
multiplied by the transpose of the sparsifying transform 
matrix (AT). The length of the signal (N) to be recovered is 
64. These signals were sparse in the redundant Haar 
transform domain. The number of input/measurement 
vectors (r) was fixed at 5.  
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Fig. 3. Comparison of recovery rate for Synthesis and Analysis prior. 

Fig. 3 shows that the recovery rate from the analysis 
prior algorithm is better than that from the synthesis prior 
algorithm. This observation is in line with the findings in 
[11]. We do not carry forth a similar experiment for an 
orthogonal sparsifying transform since the reconstruction 
accuracies are theoretically bound to be the same for 
analysis and synthesis prior methods.  

Fig.4 shows the recovery time for the synthesis and 
analysis prior algorithms The analysis prior problem takes 
slightly more time. But the time required by both algorithms 
remains almost constant as the number of sparse rows 
varies. 

 
Fig. 4. Comparison of recovery time for Synthesis and Analysis prior 
algorithms 

4. CONCLUSION 

This paper proposed new algorithms for joint-sparse signal 
recovery. The multiple input vectors (to be recovered) have 
the same support, i.e. the ensemble of vectors is jointly 
sparse. The problem is to simultaneously recover these 
vectors from their lower dimensional projections. 

The vectors to be recovered may be sparse or may be 
sparse is a transform domain. In the former case, the 
recovery is posed as a synthesis prior problem, whereas in 
the latter case it is posed as an analysis prior problem. This 
work proposes new algorithms to solve both problems. We 
compared our synthesis prior algorithm with the benchmark 
Spectral Projected Gradient (SPG) method. Our algorithm is 

as accurate as SPG. There was no existing algorithm to 
solve the analysis prior problem. Our algorithm is the first. 
It gives better results than the synthesis prior algorithm in 
situations where both are applicable. The execution speed of 
the proposed algorithms is only dependent on the size of the 
problem, unlike SPG, where the time increases as the size of 
the support for the vectors increase. 
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