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ABSTRACT 

 
Stationarity of the sparse coefficients as well as the 
sparseness of their support, along with incoherence 
assumptions related to restricted isometry, are fundamental 
to compressive sensing and sparse optimization. However, 
scientific study of many sparse processes encountered in 
nature as well as engineering applications necessitates 
solving ill-conditioned optimization metrics and tracking 
rapidly fluctuating coefficients where such incoherence and 
stationarity assumptions are difficult to satisfy. We propose 
to close the gap between mathematical optimality of sparse 
reconstruction and practical constraints of real-world 
applications by combining contextual information as 
external constraints to the traditional sparse optimization 
problem. Specifically, we explore the unobservable 
dimensions in a coherent reconstruction problem by 
navigating the non-convex topography of a modified mixed 
norm metric proposed in earlier work. Investigations based 
on simulated and experimental field data are provided. 
 
Index Terms — Compressive sensing, sparse optimization, 
adaptive signal processing. 
 

1. INTRODUCTION 
 
Recent years have seen unprecedented synergy from the 
compressive sensing community regarding the development 
of sparse optimization techniques [1-10] to solve ill-posed 
estimation problems where the number of observations (i.e., 
measurements) falls far short of the number of coefficients 
to be estimated. Most sparse optimization techniques (ref. 
e.g. [4-8] among others) minimize a mixture of the L1 norm 
of the coefficients to be estimated and the L2 norm of the 
estimation error based on an observation space significantly 
smaller in dimensionality compared to the total support of 
the coefficient space. Mathematically, this optimization 
problem is stated as: 
ˆ x = min

{x∈ C N ,0< λ ≤1}
(1− λ) x 1 + λ y −Φx

2

2
                      (1), 

where ˆ x  denotes the estimate of S-sparse components x 
defined over an N-dimensional complex field, y denotes the 
M-dimensional observation vector, Φ denotes the M × N  

estimation matrix and M << N . The coefficient distribution 
of x is assumed to have S significant components within its 
support. 
 
      Despite successful adaptation of compressive sensing in 
several applications its viability over many practical 
applications is challenged by the need to satisfy the 
restricted isometry property (RIP) [3] criteria on the 
coherence between the columns of Φ to guarantee precise 
sparse reconstruction. Recent years have seen adaptive 
sparse solutions for wide-sense stationary processes [5-8], 
strategic designs for incoherent matrices [11], mathematical 
bounds on restricted isometry [12-15] as well as model-
based approaches [16]. While these techniques are effective 
for applications that allow incoherent and wide-sense 
stationary design, scientific study of sparse processes 
encountered in nature often necessitate tracking rapidly 
fluctuating coefficients where such incoherence and 
stationarity assumptions are difficult to satisfy [17-20]. 
 
      The gap between mathematical feasibility of sparse 
reconstruction and practical constraints of real-world 
applications provides the motivation behind this work. We 
extend recent work [10] to propose a context-driven 
navigation of the unobservable dimensions across a non-
convex cost function. This enables us to swiftly reach 
feasible solutions that track coherent time-varying sparse 
problems. Although our approach is generally applicable to 
any application involving sparse coefficients, we target 
shallow water acoustics as a case study of a physical 
environment where challenges discussed above are a 
realistic concern. 
 

2. SHALLOW WATER ACOUSTIC CHANNELS: A 
CASE STUDY IN COHERENT QUASI-STATIONARY 

SPARSE SENSING 
 
A classic application where the signal processing challenges 
outlined above manifest in real life is shallow water 
acoustics, particularly in the context of scientific 
observation of the ocean as an acoustic channel [9,10,17-
20]. The rapidly fluctuating nature of multipath due to 
surface wave motion, particularly in rough sea conditions, as 
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well as occurrence of oceanic phenomena such as surface 
wave focusing [18], makes the time-variability of the 
channel impulse response difficult to observe over a 
reasonable observation window. Therefore, realistic 
characterizations of the shallow water channel [9,10,17-20] 
have been centered around the Delay-Doppler spread 
function, which captures the transient shallow water channel 
scattering function as a two-variable function over the delay 
taps (i.e, impulse response) and the Doppler spread around 
each delay tap as shown in Figure 1. 

 
Figure 1(a): Delay spread (milliseconds) calculated using a least 
squared estimator along the y-axis for each instant in absolute time 
(x-axis) spanning 20 seconds. (Depth: 15 meters, Range between 
transmitter and receiver: 200 meters, rough sea conditions) 

 
Figure 1(b): Delay-Doppler spread function calculated (long-term 
averaged estimate) from Figure 1(a) using direct Fourier transform 
along the first dimension (absolute time).  
 
The direct arrival from the transmitter to the receiving 
hydrophone manifests as the straight line in Figure 1(a) and 
as the bright point at 0 Hz in Figure 1(b), while the bands of 
multipath arrivals, exhibit significant temporal fluctuations 
with occasional focusing (shown as bright dots) due to 
surface wave reflection. The sparse estimation problem of 
tracking the Delay-Doppler spread function coefficients, 
written as the KL-dimensional vector u, may be stated in 
terms of the following model: 
y =Cu+n,                                                                   (2)  
where y denotes the M-dimensional observation vector     
(M << KL), n ~  N(0,σ2I), and the ith row of C is given 
as:C(i) = e(i)⊗ x(i), where ⊗ denotes the Kronecker 

product,  x(i) = [x(i)x(i −1) x(i −K +1)] and 
  e(i) = [e j2πγ1iΔte j2πγ 2iΔt e j 2πγ L iΔt ]. Typically, to capture the non-
stationary Doppler spread at sufficient resolution the 
observation window needs to be small enough to assume 
quasi-stationarity. This necessitates C to have many 
columns of closely spaced frequencies without enough rows 
to ensure sufficient inter-column incoherence to satisfy RIP 
constraints.  
 
      Therefore, the shallow water acoustic communications 
problem presents a realistic case study for developing and 
validating adaptive sparse optimization techniques where 
conditions for stationarity and incoherence are violated. In 
the sequel, we extend recent work in sparse optimization 
[10] to propose a novel method to track the unobservable 
dimensions that fall outside the span of columns of a 
coherent reconstruction matrix. We adopt the notation in 
Equation (1) and refer to the unobservable dimensions as the 
“invisible dimensions” for the rest of the paper. 
 

3. SPARSE OPTIMIZATION THROUGH 
CONTEXTUAL NAVIGATION 

 
Recently non-convex mixed norm solver (NCMNS) was 
introduced [9,10] to track rapidly fluctuating sparse 
coefficients x adaptively over time for a fixed λ with precise 
reconstruction guaranteed for well-conditioned, and hence, 
incoherent Φ, using the modified cost function: 
ˆ z = min

{z∈C N }
(1− λ) z 2

2
+ λ y −ΦZ21

2

2
,   0 < λ ≤1,    (3)  

where z i( )2
= x i,  ∀i=1

N ,     Z ≡ diag(z), and 1 denotes the all-ones 
vector. The modified mixed norm cost in Equation (3) is a 
non-convex function over z, denoted as F(λ,F,y,z), and 
mathematically equivalent to the cost function in Equation 
(1). The gradient of F(λ,F,y,z) with respect to z*, which is 
the direction of steepest descent, has 3N possible stationary 
points since for each dimension we may either have 0, or the 
two possible squared roots of ˆ x i,∀i=1

N  to get a zero gradient 
at that dimension. Of these 3N possible stationary points, 2S 
(two possible squared roots of ˆ x i,∀i=1

N  for each of the S 
dimensions) correspond the unique minimum ˆ x  in the 
original convex optimization cost in Equation (1). 
Sufficiency criteria for guaranteed convergence to one of the 
2S stationary points are derived in [10] and a detailed 
discussion is outside the scope of this work. 
 
      In this work, we improve upon the tracking precision in 
Equation (3) as well as include the unobservable “invisible” 
dimensions by initializing the tracker at each stage that 
contains contextual information. It is noteworthy that 
operating in the z-domain allows us to turn any of the N 
dimensions “on” or “off” by initializing the corresponding 
element of z to zero. This switching property is a feature of 
the non-convex cost function in Equation (3) as its gradient 
with respect to z* has zi  as a root for its ith element. This 
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implies we may initialize z appropriately to incorporate 
external constraints and develop a context-constrained 
gradient descent approach to solve Equation (3) turning 
“invisible dimensions” on or off as the constraints dictate.  
 
3.1 Constraint-based navigation 
 
We propose the following constraint-based approach to 
navigate the non-convex manifold of the cost function in 
Equation (3). If the coherence criteria for Φ dictate an S*-
sparse support for x, when we expect the true sparseness to 
be S>S*, we may track the significant components using the 
following rule: 
 

Table 1: Tracking initialization for gradient-based 
optimization that includes context-based constraints 
on the sparse support 
Step 1: For a given time step i, locate the dominant S* 

dimensions of ˆ x [i] (derived from ˆ z ) in 
Equation (4)  

Step 2: Turn off the other dimensions of ˆ x [i]. Add (S-
S*) “invisible dimensions” of ˆ x [i] from the 
physical constraints of the application (e.g. in 
shallow water acoustics, proximity constraints 
due to multipath occurring in “bands” is a 
reasonable physical constraint to impose based 
on the channel model) 

Step 3: Initialize the next step of the tracking problem 
based on 1 and 2 and repeat. 

 
    Though relatively free of model assumptions besides 
well-known and measurable physical constraints of an 
application, the above approach may not guarantee efficient 
selection of the “invisible dimensions”. Therefore, we adopt 
the normalized prediction error in estimation problems as an 
external constraint, as it is well known [Section III, 21] that 
the normalized prediction error statistically follows the 
actual estimation error in channel estimation applications. 
Step 2 in Table 1 may now be modified to include the 
normalized prediction error as a context-based constraint 
and the tracking initialization is now given in Table 2. 
 

Table 2: Tracking initialization example for 
gradient-based optimization that includes context-
based constraints (prediction error) on the sparse 
support 
Step 1: For a given time step i, locate the dominant S* 

dimensions of ˆ x [i] (derived from ˆ z ) in 
Equation (4)  

Step 2: Turn off the other dimensions of ˆ z . Choose (S-
S*) other dimensions from ˆ x [i] that minimize 
the normalized prediction error, as the 
“invisible dimensions”.  

Step 3: Initialize the next step of the tracking problem 
based on 1 and 2 and repeat. 

 
     The second step in Table 2 limits choice of the (S-S*) 
dimensions to a subspace based on physical knowledge of 
the application to avoid combinatorial challenges. A 
generalized and rigorous characterization of reasonable 
subspaces to choose from is work in progress and out of the 
scope of this work. 
 
3.1 Tracking sparseness of the underlying distribution 
 
We may measure the match between the estimated and 
expected sparseness of the solution through the prediction 
error, which statistically follows the true estimation error 
[21]. An investigation over experimental field data [19] 
collected at 200 meters range and 15 meters range for rough 
sea conditions demonstrated high time-variability over the 
value of the optimal weighting ratio λ. Therefore, direct 
measurement of the optimal sparseness against prediction 
error necessitates multiple solutions of the coefficients using 
different λ in Equation (3), which conflicts with our goal of 
efficient tracking. Therefore, we propose the following data-
driven measure to update λ based on the tracked estimates: 

λ =
ˆ x 1

2

ˆ x 2

2                                                      (4) ,  

i.e. the observed sparseness itself is used to update λ over 
the field data.  

3. RESULTS 
 

We provide representative numerical and data-driven 
evidence for adopting the NCNMS technique [10] among 
other existing methods for employing the proposed context-
based sparse optimization approach. Figure 2 provides 
numerical evidence of the relative ability of the NCMNS 
technique [10] to track rapidly time-varying coefficients of 
shifting support against popular sparse sensing techniques 
[5-7]. Figure 3 illustrates the Delay-Doppler spread function 
computed using NCNMS [10] measured across 12 
milliseconds delay spread and approximately double the 
Doppler resolution of Figure 1(b) across a much smaller 
observation window of 680 milliseconds, i.e. a more 
appropriate window length to assume quasi-stationarity in 
shallow water acoustics. The consistent success of the 
NCMNS technique [10] in high-precision tracking at 
comparable or less computation time over other methods 
combined with its ability to correctly reconstruct the bands 
of multipath arrivals in the shallow water acoustic channel, 
provide the basis for imposing the contextual constraints in 
Tables 1 and 2 using non-convex navigation. 
 

3. CONCLUDING REMARKS 
 

We explore the signal processing challenges posed by real 
environments to reliably employ established sparse 
optimization techniques that assume incoherence and  
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Figure 2: Comparison between NCNMS and other established 
techniques in tracking rapidly shifting support of the tracked 
coefficients. 

 
Figure 3: Delay-Doppler spread function calculated over 12 
milliseconds delay spread and ±10Hz and a quasi-stationary 
window length of 0.6758 milliseconds. (Depth: 15 meters, Range 
between transmitter and receiver: 200 meters, rough sea 
conditions) 
 
stationarity constraints on the underlying sparse estimation 
problem. Specifically, we propose a fundamentally non- 
traditional approach to adaptive sparse estimation of quasi-
stationary variables that exploits context-driven proximity 
relationships over non-convex surfaces to navigate 
unobservable dimensions in coherent detection problems. 
We also provide a data-driven measure to track the 
sparseness of the underlying distribution. We further 
provide numerical and data-driven basis for adopting the 
NCNMS technique [10] over existing methods to employ 
context-based constraints for sparse optimization. Ongoing 
directions include exploiting proposed context-based 
external constraints to measure the true sparseness of the 
underlying distribution as well as generalize the concept of 
context-driven navigation beyond proximity and prediction 
error constraints. 
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